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ABSTRACT 

An original approach to the simulation of the development of 

extensive air showers up to extreme energies has been conceived, 

developed and realized in the form of a computer code, the main features 

and performance of which are the subject of the present thesis. The 

originality of the adopted approach resides in its transparency, rapidity and 

flexibility, at variance with existing simulation codes that are rigid black 

boxes implying the use of thinning algorithms and requiring very long 

computer times that considerably limit the size of available samples of 

simulated events.  

The price to pay is major simplifications and approximations of the 

physics mechanisms underlying the development of such showers. The 

approach adopted here cannot have the ambition to reproduce reality with a 

good accuracy, as existing sophisticated codes have. It must instead be seen 

as a complement to such codes with, in particular, a much stronger didactic 

power. It will contribute to a deeper understanding of what is really going 

on, to the identification of the parameters of relevance and to the evaluation 

of the impact of the approximations commonly made. 

Extensive air showers in the extreme energy range are the 

manifestation of ultra high energy cosmic rays (UHECR, energies in excess 

of ~10
18.5

 eV) when entering the earth atmosphere: such showers, rather 

than the primary nuclei that induce them, are observed by ground detectors 

such as the Pierre Auger Observatory in Argentina with which VATLY, the 

astrophysics laboratory where the present work has been made, is 

associated. Such observations are at the forefront of current research in the 

field and aim at identifying the sources (known to be extragalactic) and the 

nature of UHECRs and to unravel the acceleration mechanism. A first 

section takes stock of the current state of the art in UHECR physics and 

gives a brief description of the Pierre Auger Observatory, of its methods 

and of its present achievements.  

The approach adopted here consists in describing low energy sub-

showers in a parameterised form rather than following the details of their 

development. More precisely, the first interaction of the primary with the 

atmosphere is described by simulating the production of new particl1es but 

the interactions of such new particles with atmosphere will only be 

simulated when their energies exceed a predetermined fraction f, typically 

5%, of the primary energy. If they do not, the new particle is simply 
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replaced by a sub-shower with longitudinal and transverse profiles 

parameterised as a function of altitude, energy and obliquity. In practice, 

the muon and electron/photon components of the transverse profile are 

treated separately. The application to electromagnetic showers (induced by 

decay photons of neutral pions) is presented in Section 2, and to hadronic 

showers in Section 3. Section 4 presents the details of the parameterisation 

procedure and illustrates the use of the code on a simple example.  
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1. INTRODUCTION, MOTIVATIONS 

1.1 Ultra High Energy Cosmic Rays and the Pierre Auger Observatory 

This work fits in the general framework of the association of 

VATLY, the Ha Noi cosmic ray laboratory where it has been performed, 

with the Pierre Auger Observatory. The present Section is an introduction 

to this Observatory and to the physics and astrophysics questions that it is 

addressing. 

1.1.1 Generalities 

Cosmic rays [1] are ionised nuclei that travel in space up to 

extremely high energies of the order of 10
20 

eV=16 Joules. There are very 

few of them but their contribution to the energy density of the Universe is 

similar to that of the Cosmic Microwave Background or of the visible light 

or of the magnetic fields, namely ~1 eV/cm
3
. Their power law energy 

spectrum (Figure 1.1), spanning 32 decades (12 decades in energy), is of 

the approximate form E
–2.7

.    

 The Pierre Auger Observatory [2] studies the high energy part of the 

spectrum, where an extra galactic component can be found. Its energy 

density is estimated to some 2 10
–19 

erg/cm
3
 implying a power of ~10

37
 

erg/Mpc
3
/s.  Both active galactic nuclei (AGN) and gamma ray bursts 

(GRB) stand, from the point of 

view of energy, as possible 

sources. One speaks of Ultra High 

Energy Cosmic Rays (UHECR) 

when the energy exceeds ~10 
18.5 

eV. 

Three major questions are 

being addressed by such studies, 

with the aim of understanding the 

acceleration mechanism at play: 

Which is the energy distribution of 

UHECR‟s? Where do they come 

from? Which is their nature? 

 At lower energies, cosmic 

rays are found to be ionised nuclei 

with relative abundances similar to 

those measured in general in the 

Figure 1.1: The cosmic ray energy 

spectrum displaying its main features. 



 4 

Universe: protons dominate, followed by helium nuclei and by a spectrum 

of strongly bound light nuclei, mostly iron. Spallation reactions occurring 

in the interactions of cosmic rays with interstellar matter tend to fill the 

valleys of the original spectrum.  

Most lower energy cosmic rays are galactic and have their sources in 

the shells of young Super Nova Remnants (SNR) in the Milky Way, the 

acceleration mechanism being well described by diffusive shock 

acceleration across the shock front [3]. This is a collisionless process, with 

magnetic fields causing the random walk progression of the particle being 

accelerated, implying many successive traversals of the shock front. Each 

shock traversal increases the particle energy by a constant fraction, 

proportional to the relative velocity of the upstream medium with respect to 

the downstream one. Turbulences around the shock result in strong 

magnetic field amplification increasing significantly the efficiency of the 

acceleration process. Diffusive shock acceleration has the property to 

generate a power energy spectrum with an index ~2 to 3. If the same 

mechanism were responsible for the acceleration of UHECR‟s, it would 

require much larger shocks, and possibly larger magnetic fields, than found 

in SNR shells.  

 The identification of SNR shells as sources was only made possible, 

in the case of galactic lower energy cosmic rays, by the availability of 

gamma ray telescope arrays, such as HESS in Namibia. What is detected is 

not the primordial cosmic ray but the decay photons of neutral pions 

produced in the interaction of the primordial cosmic ray with its 

environment. At UHECR energies, the rates are too low to use such a 

method. However, one may now hope to be able to identify counterparts 

directly, the energy being so high that bending in magnetic fields along the 

path from the source to the earth should no longer prevent such 

associations. 
 

1.1.2 Extensive Atmospheric Showers and the Pierre Auger Observatory 

 The Pierre Auger Observatory (PAO) is a hybrid detector covering 

3‟000 km
2
 where showers are detected from the fluorescence they produce 

in the atmosphere and by their impact on a ground detector array (Figure 

1.2). Construction of the baseline design was completed in June 2008. With 

stable data taking starting in January 2004, the world's largest data set of 

osmic ray observations had been collected already during the construction 

phase of the Observatory.  
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 When a primary cosmic ray enters the Earth atmosphere, it interacts 

with it and produces a large number of mesons, which, in turn, interact with 

the atmosphere, and so on until the primary energy is exhausted in 

ionisation losses. The result is a cascade of interactions (Figure 1.3) 

producing an extensive air shower (EAS). Its longitudinal profile evolves 

slowly with energy, in proportion to its logarithm, while its energy content, 

in the form of ionisation losses, is proportional to energy.  

 

A major fraction of the mesons produced are pions, either neutral or 

charged. The former decay promptly into two photons and are therefore 

lost for the development of the hadronic cascade. They generate instead 

electromagnetic showers consisting 

mostly of electrons, positrons and 

photons, developing longitudinally at the 

scale of a radiation length, twice as short 

as the interaction length which governs 

the development of the hadronic cascade. 

The charged pions have a chance to decay 

into a muon-neutrino pair if their decay 

length, 56 m/GeV, is short enough in 

comparison with the interaction length. 

As a result, the muon to electron/photon 

ratio increases with depth. 

Figure 1.2 Left: Plan view of the PAO, covering some 60×50 km
2
. SD tanks are shown as 

dots and the lines of sight of the 24 FD telescopes as green lines. 

Right: The first four-fold hybrid event (when the array was not yet complete). 

Figure 1.3: Development of an 

extensive air shower in the 

atmosphere. 
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 Around 30 EeV, the UHECR flux is about 

0.2 km
−2

century
−1

sr
−1

EeV
−1

 and drops rapidly at higher energies, requiring 

a very large coverage, but the showers contain billions of particles when 

reaching ground and cover several square kilometres, allowing for a thin 

sampling. The PAO covers 3000 km
2
 in the Argentinean pampas, of which 

only 5 ppm are covered by detectors. These include 1660 Cherenkov 

detectors making up the surface detector (SD, Figure 1.4), and 24 

fluorescence telescopes making up the fluorescence detector                  

(FD, Figure 1.5). Data are transferred by radio to an acquisition centre 
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Figure 1.4: Picture of a Cherenkov tank on site (left panel) and exploded view (right 

panel). 
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Figure 1.5 Left: A fluorescence station: schematic view (on top) and its photograph.  

Right: Picture of an eye. 
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which filters them and sends them out for subsequent dispatching to the 

laboratories associated with this research, including VATLY in Hanoi.  

1.1.3 Data reduction  

 The FD is organized in four stations of six telescopes each, which 

overlook the PAO area. They measure the fluorescence light (near UV) 

produced in the interaction between the shower charged particles and the 

nitrogen molecules of the atmosphere. They can only operate during clear 

moonless nights, which implies a duty cycle of ~13%. Each telescope 

covers a field of view of 30
o
 in azimuth and 28.6

o
 in elevation. After having 

been filtered, the light is reflected by a concave mirror onto an array of 440 

hexagonal PMT pixels. In principle, a single telescope is sufficient to 

measure the direction of the shower axis from the measurement of the 

times at which each pixel is hit. But, in practice, a precise measurement 

requires either binocular detection or, less demanding, the simultaneous 

detection of the time at which at least one of the ground Cherenkov 

detectors has been hit by the shower. The energy is measured from the 

longitudinal profile which, when accurately and fully measured, provides a 

direct calorimetric evaluation of the shower energy (the energy carried 

away by neutrinos and muons penetrating ground is of the order of 10% 

and does not much fluctuate from shower to shower). However, in practice, 

this measurement is difficult: it implies a good knowledge of the air 

transparency and of the atmospheric Cherenkov light contamination and, 

most of the time, the shower is only partly contained in the field of view. 

Figure 1.6 illustrates the information available from the SD. 

The SD samples the footprint of the showers on ground. It is made of 

a triangular array of water Cherenkov counters having a mesh size of      

1.5 km deployed on flat ground at an altitude of 1400 meters above sea 

level, near the maximum of shower development for the highest energy 

vertical UHECRs. When reaching ground, showers consist essentially of 

low energy electrons, positrons and photons as well as of muons having a 

kinetic energy of a few GeV. The muon signal is proportional to track 

length while electrons and photons produce small showers at radiation 

length scale that are fully contained in the detector.  

When shower particles are detected in at least three counters, the 

measurement of the time at which they are hit allows for a precise 

measurement of the azimuth and zenith angle of the shower axis accounting 

for the slight curvature of the shower front.  
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The energy measurement is indirect but much easier than in the FD 

case. It implies the construction of a standard function, called lateral 

distribution function (LDF), which gives the average signal measured in a 

Cherenkov tank as a function of shower energy, distance to the shower axis 

and zenith angle. The zenith angle dependence is evaluated under the 

hypothesis of an isotropic cosmic ray flux. The energy is essentially 

measured by the normalization of the measured signals to the standard LDF 

at a distance of 1000 meters from the shower axis. The choice of such a 

reference is dictated by two scales: the tank spacing, 1.5 km, and the size of 

the shower detectable footprint on ground, which increases only slowly, 

logarithmically, with energy. In practice the influence of the former is 

dominant. The final energy scale is calibrated using FD data in hybrid 

events as illustrated in Figure 1.7. Figure 1.8 summarizes the information 

gathered by the SD, showing both the footprint of the shower on ground 

and the fit to the LDF. 

 

 

 

Figure 1.6: A typical FD event showing the pixel pattern (bottom) and fit to the 

longitudinal profile (top). 
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Figure 1.7: Hybrid events. Left: Correlation between the decimal logarithms of the 

energy measured in the FD (abscissa) and of the normalization (ordinate) of the 

measured SD signals to the value of S(1000). Right: Fractional difference between the 

calorimetric energy, EFD, and the energy estimate of the surface detector, E. 

Figure 1.8: SD data of a typical event of about 5x10
18

 eV: Top left: Top view of 

triggered tanks. Lower left: LDF fit. Right: FADC traces from four detectors.  
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1.1.4 Some PAO important contributions  

 The PAO has already given two particularly important contributions 

to the physics of UHECRs. One is the evidence for the so-called GZK cut-

off [4], the other is the observation of a correlation between the direction of 

arrival of the highest energy UHECR and nearby galaxies.  

  For some time, the differential spectral index of the energy spectrum 

has been known to change at ~ 3 10
15

eV from 2.7 to 3.0 (the knee), and 

again back to 2.7 near the upper end of the spectrum (the ankle). The latter 

is often attributed to the transition from galactic to extra galactic sources, 

although some models accommodate extra galactic origins below the ankle. 

Sensible scenarios can be produced which reproduce the data. Of particular 

relevance to such scenarios are the interactions of cosmic rays with the 

cosmic microwave background (CMB), producing either electron-positron 

pairs or new mesons. Of these, the pion photoproduction threshold is of 

particular importance and causes the so-called Greisen-Zatsepin-Kuzmin 

(GZK) cut-off at the end of the spectrum, from the name of the physicists 

who first predicted the effect. Until recently, the existence of such a cut-off 

was uncertain but the Pierre Auger Observatory has given evidence for it. 

With a typical interaction length in the few 10 Mpc scale, cosmic rays 

coming from larger distances cannot make it to the Earth without 

interacting, and therefore loose energy: their flux is significantly damped 

and only nearby (<100 Mpc) sources can contribute to the UHECR 

spectrum. 

The most recent PAO data, combining both SD and FD data, are 

illustrated in Figure 1.9 showing the fractional difference of the spectrum 

with respect to an assumed flux of spectral index 2.6. Two features are 

evident: an abrupt change in the spectral index near 4 EeV (the “ankle”) 

and a more gradual suppression of the flux beyond about 30 EeV 

corresponding to the GZK cut-off. 

The large UHECR statistics accessible to the PAO has revealed a 

correlation with extragalactic counterparts. Of relevance to this study is the 

fact that the nearby universe (100 Mpc radius), in which detected UHECRs 

are confined by the GZK cut-off, is highly inhomogeneous (Figure 1.10). 

Selecting UHECR having an energy in excess of 6 10
19

 eV and comparing 

the direction in the sky where they come from with a catalogue of nearby 

(<75 Mpc) galaxies, revealed a clear correlation (Figure 1.10). There was 

an even better correlation with nearby AGNs (of which, however, there 
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exists no complete catalogue). The correlation disappeared when including 

lower energy cosmic rays (pointing accuracy) or farther away galaxies 

(GZK cut-off). 

 

   

 An update of these data including data collected through 31st March, 

2009 and corresponding to an exposure of 17040 km
2
 sr yr (±3%), nearly 

twice the former value, brings in 31 additional events above the energy 

threshold of 55 EeV. The systematic uncertainty on energy is ~22% with a 

resolution of ~17% while the angular resolution of the arrival directions is 

better than 0.9
o
. During the period reported earlier, 18 out of 27 events 

arrive within 3.1
o
 of an AGN in the VCV catalogue with red shift less than 

0.018 while of the 31 additional events, only 8 have arrival directions 

within the prescribed area of the sky, not significantly more than the 6.5 

events that are expected to arrive on average if the flux were isotropic: the 

degree of correlation with objects in the VCV catalogue has decreased with 

the accumulation of new data. Yet, possible biases have been carefully 

explored and discarded.   

Figure 1.9 Left: Fractional difference between the combined energy spectrum of the 

PAO and a spectrum with an index of 2.6. Data from HiRes are shown for comparison. 

Right: Combined energy spectrum compared with several astrophysical models 

including a pure composition of protons (red lines) or iron (blue line). 



 12 

 

 

 

1.1.5 Identification of the primaries 

Low energy cosmic rays are known to have abundances similar to 

those found in interstellar matter with a predominance of protons. At 

UHECR energies, however, the mass composition of primaries is uncertain. 

Measuring the mass distribution of the primaries in a range spanning 

essentially from protons to iron nuclei, higher mass nuclei being much less 

likely, is therefore a major challenge. 

Figure 1.10: The nearby Universe 

Figure 1.11: Circles of 3.1
o
 are drawn around 27 UHECR detected by the PAO up to 

year 2007; red crosses are 472 AGN (318 in field of view) having z<0.018 (D<75Mpc). 

The solid line shows the field of view (zenith angle < 60
o
) and the colour tells the 

exposure. The dashed line is the super galactic plane. 
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 The main difference between showers induced by protons and by 

iron nuclei results from the very different natures of their first interaction in 

the upper atmosphere. The proton shower starts to develop on average after 

having crossed one interaction length and the depth of its starting point 

fluctuates with a variance also equal to one interaction length. The iron 

shower, in an oversimplified picture, may be seen as the superposition of 

56 proton showers (protons and neutrons are equivalent at such energies), 

each carrying 1/56 of the nucleus energy. As a result it starts much earlier, 

and the location of its starting point fluctuates much less, than in the proton 

case. From then on proton and iron showers develop in the same way. 

While such a description is useful to provide a simple qualitative 

explanation of what is going on, the reality is far more complex and its 

details are not well understood. Not all nucleons of the colliding nuclei 

interact the same way. In a simplified picture, some nucleons − one refers 

to them as wounded nucleons − interact as if they were independent 

nucleons while the other nucleons − one refers to them as spectator 

nucleons − are unaffected. This, again, is an oversimplified view of reality. 

Glauber model [5] provides a recipe to evaluate the number of 

wounded nucleons. 

 

 

 Nevertheless, as a general rule, in order to distinguish between light 

and heavy incident nuclei one will aim at measuring quantities that are 

sensitive to the early shower development. These include, among others, 

the longitudinal profile, the rise time and the muon abundance. The FD is 

Figure 1.12: <Xmax> and RMS(Xmax) compared with air shower simulations using different 

hadronic interaction models. 
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used to measure with good resolution the shower longitudinal profile and 

the depth at which the shower reaches its maximum (Xmax). At a given 

energy, the mean and the width of the Xmax distribution are both correlated 

with the cosmic ray mass composition. Proton showers penetrate deeper 

into the atmosphere (larger values of Xmax) and have wider Xmax 

distributions than heavier nuclei. In practice, however, such a measurement 

is difficult and a strict selection of useful events is mandatory. The most 

recent PAO results are shown in Figure 1.12 together with predictions of 

popular hadronic models for both protons and iron nuclei. 

 The time profile of particles reaching ground is sensitive to the 

shower development as the first portion of the signal is supposed to be 

dominated by muons which arrive earlier and over a period of time shorter 

than electrons and photons. A rise time (t1/2) is defined for each tank FADC 

trace as the time to go from 10% to 50% of the total integrated signal. To 

the extent that both rise time and Xmax are expected to be sensitive to the 

primary mass composition, they should display a clear correlation. 

Evidence for it is obtained by unfolding the dependence of the rise time on 

zenith angle and distance to the shower axis. This is done by defining a 

standard function, in the same spirit as was done for the LDF, and using a 

particular energy (10
19

eV) as reference − as one uses the particular distance 

of 1000 meters for S(1000). The resulting quantity, called i , increases on 

average with energy as expected for showers developing deeper into 

atmosphere (Figure 1.13 left) and is indeed clearly correlated with Xmax as 

shown in Figure 1.13 right.  

 Another property displayed by the rise time is its dependence on tank 

azimuth  measured around the shower axis, the more so the more inclined 

is the shower. When an inclined shower reaches ground, the upstream tanks 

are hit first and the downstream tanks are hit last. The former probe the 

shower at an earlier stage of development than the latter do. But there is 

also a pure geometric effect that differentiates between upstream and 

downstream tanks. The path length for particles to reach an upstream tank 

from the shower axis is much shorter than that to reach a downstream tank 

with the result that the former are seen under a larger solid angle than the 

latter and therefore detect a larger signal.  
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Moreover, as noted earlier, the mean response to muons − most 

muons having sufficient energy to feed through the tanks − is independent, 

on average, from the angle of incidence. On the contrary that of electrons 

and photons − generating small showers in water − depends on the angle of 

incidence in the same way as does the tank section normal to the incoming 

particle momenta. The net effect is an azimuthal asymmetry of the tank 

responses around the shower axis, trivially increasing with the distance r of 

the tank to this axis. This asymmetry is in particular visible on the 

azimuthal dependence of the rise time and is observed to reach a maximum 

around 50
o
 zenith angle independently from energy. Interpreting this result 

in terms of mass composition implies that the mean primary masses 

increase with energy, a result consistent with the FD measurements of the 

longitudinal profile, suggesting a transition from proton dominance − light 

nuclei − to iron dominance − heavier nuclei − when the energy increases 

from 1 to 30 EeV. 

 

1.1.6 Muon abundance 

An indicator of the shower age is the relative muon abundance, 

which increases with age: at a same depth, iron showers are therefore 

expected to be more muon-rich than proton showers are. While no direct 

measurement of the muon abundance has yet been made, numerous 

attempts at measuring quantities closely related to the muon abundance 

Figure 1.13 Left: SD events; dependence of the mean value of i on energy. Right: 

Hybrid events; dependence of the mean value of i on Xmax. A correlation is found 

which is parameterised with a linear fit. The shaded areas show the estimated 

uncertainty (one and two σ), obtained by fluctuating each point randomly within the 

measured error bar and repeating the fitting procedure. 
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have been explored. Such is the rise time, which was presented in the 

preceding section.  

 Other approaches include attempts at identifying muons from sudden 

jumps in the FADC traces (the “jump method”) and a direct evaluation of 

the muon signal by subtraction of the electron-photon contribution from the 

FADC trace.  

This latter method implies that the electron-photon signal (i.e. the 

contribution given by electrons and photons to the FADC traces) is a 

function of energy, zenith angle and depth (measured with respect to Xmax) 

having a zenith angle dependence obtained from the hypothesis that the 

bulk of detected showers are isotropic and an energy dependence known 

from hadron models. Under such assumptions, the muon abundance is the 

only unknown. When measured relative to that predicted for proton 

primaries, it is 1.53+0.08 (stat.)+0.21 (syst.). Pure iron composition would 

predict a lower factor, of the order of 1.3.   

 

  

Additional evidence is obtained by the analysis of hybrid events 

where the longitudinal profile is used to choose between a proton and an 

iron hypothesis, whatever is best, and to then predict the amplitude of the 

signal on ground (Figure 1.14). A similar conclusion is also reached from 

analyses of the FADC traces such as done with the jump method: the muon 

abundance inferred from such analyses is significantly larger than that 

predicted for iron by popular hadronic models.  Figures 1.15 and 1.16 

Figure 1.14: Measured longitudinal (left panel) and lateral (right panel) profiles for 

one of the hybrid events. The best-matching simulation is shown as squares and 

dashed line in the lateral distribution while the measured SD signal (circles, full 

lines) is more than twice as large. 
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summarize the results. A possible interpretation is to dispose of the 

problem by blaming it on a 30% underestimate of the FD energy scale, as 

illustrated in Figure 1.16. However, an energy independent analysis [6] 

rather suggests that the hadronic models used in the simulation predict too 

steep a muon lateral distribution function. This is indeed another way to 

increase the amplitude of the muon component in the D range explored by 

the SD. Moreover it would explain why the azimuthal asymmetry of the 

rise time gives results in agreement with the FD Xmax measurement, as both 

probe the longitudinal profile independently from the lateral distribution 

function.  

 

In summary, the mass composition of UHECR primaries remains an 

open question. Major progress has been achieved in the analysis of FD data 

where a rigorous treatment of possible biases and systematic uncertainties 

is now available. The results are consistent with the predictions of hadronic 

models and, in such a picture, provide evidence for a transition from 

proton-like to iron-like primaries over the energy range covered by the 

PAO, say 1EeV to 30 EeV where the GZK threshold becomes effective. 

This conclusion is also reached, with lesser accuracy, by the analysis of the 

azimuthal rise time asymmetry in the SD, an analysis sensitive to the depth 

at which the longitudinal shower profile starts declining. Yet, SD analyses 

that are sensitive to the amplitude of the muon signal can only be made 

consistent (barely) with the predictions of hadronic models at the price of a 

30% increase of the energy scale. A possible cause might be the 

Figure 1.15: Results of earlier studies on primary composition. 
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inadequacy of hadronic models to reproduce the lateral distribution 

function of muons. Another possible cause might be the inadequacy of the 

detector simulation to describe the response to muons. However, in spite of 

numerous attempts, no evidence has ever been found that such might be the 

case. 

 

1.2 Simulations 

1.2.1 Generalities 

As amply illustrated by the preceding sections, the analysis and 

interpretation of cosmic ray data is complicated by the impossibility to 

access directly primaries: all measurements are made on secondaries, 

components of the showers induced by the interaction of the primaries with 

the atmosphere.  

To obtain information on the primaries, a model of these interactions 

and of the development of extensive air showers in necessary. The 

performance of such a model and the quality of the simulations that it 

offers are essential factors of success in the analysis and interpretation of 

cosmic ray data.   

Figure 1.16: Number of muons at 1000 m relative to QGSJET-II/proton vs. the energy 

scale from different SD analyses (see text). The events have been selected for log10(E/eV) 

= 19.0  0.02 and     50
o
. According to the tested model, iron primaries give a number 

of muons 1.32 times bigger than that from protons (horizontal lines in the figure). 
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Such simulations imply the ability to describe precisely both the 

shower development and the detector response. To the extent that the 

physics of fluorescence and Cherenkov radiations are well known and 

understood, the latter is in principle straightforward but, in practice, quite 

complex. Simulating the FD data implies a good knowledge of the 

transparency of the atmosphere, including its aerosol content, and a good 

evaluation of the main backgrounds, including Cherenkov light radiated in 

the atmosphere. Simulating the SD data requires a detailed understanding 

of the Cherenkov detectors, including a good knowledge of the water 

transparency and liner diffusivity as a function of wave length, of the 

quantum efficiency of the photocathode, again as a function of wave 

length, of the collection efficiencies at the first and second dynodes as a 

function of photon impact, of the PMT gains, of the electronic and thermal 

noises, of the after-pulsing characteristics, etc. Much effort has been 

dedicated in the PAO collaboration to produce computer codes that offer 

adequate descriptions of the SD and FD responses. 

 The former, however, namely the simulation of the shower 

development proper, addresses an energy and rapidity range in which the 

characteristics of the hadronic interactions of nuclei, baryons and mesons 

with air are unknown. One needs to rely on hypotheses, some of which are 

highly conjectural. Indeed, most of our knowledge of very high energy 

hadronic interactions has been obtained from proton-antiproton collisions 

and is now being upgraded with LHC data becoming available. In addition 

to this fundamental problem, a technical difficulty results from the very 

large number of shower particles, which precludes following each of them 

individually in a Monte Carlo code. In order to cope with the need to keep 

computer time within reasonable limits, various techniques have been 

developed, none of which, however, is fully satisfactory. 

 General programs are available to simulate extensive air showers. In 

particular, CORSIKA and AIRES offer general frames that can 

accommodate a number of hadronic interaction models. They have been 

used by the PAO Collaboration to generate a library of proton and iron 

showers covering the energy range from 10
17

 to 10
20

 eV and a range of 

zenith angles between 0
o
 and 70

o
. However, such codes are often seen as 

black boxes and lack flexibility. 
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1.2.2 Main difficulties and present approach 

Our knowledge of high energy hadronic interactions has its source in 

experiments performed on four major colliders: proton-antiproton colliders 

at CERN and Fermilab (Tevatron) reaching 1+1=2 TeV in the cms, 

corresponding to 2 10
15

 eV for cosmic rays; LHC at CERN reaching 

3.5+3.5=7 TeV in the cms, corresponding to 2.5 10
16

 eV for cosmic rays; 

heavy ion colliders at RHIC (Brookhaven, Au, 100 GeV/nucleon) and LHC 

(CERN, Pb, 1.38 TeV/nucleon). To reach the UHECR regime implies an 

extrapolation by nearly four orders of magnitude. 

Moreover, the region of phase space explored by such colliders is 

different from the region of relevance to the development of extensive air 

showers. The former is the central, the latter the forward rapidity region. 

The forward rapidity region is confined to the beam pipe in collider 

experiments, three units of rapidity correspond to less than 6
o
. 

In cosmic ray interactions, the target is always a nucleus, mostly 

nitrogen. There exist no collider data of hadronic interactions on nuclei in 

the proper energy and rapidity ranges. 

In the development of extensive air showers, the projectile is usually 

a meson, mostly pions and kaons. There exist no collider data of hadronic 

interactions of mesons in the proper energy and rapidity ranges. 

It is only because we believe to understand sufficiently well the 

strong interaction that we hope to be able to extrapolate available data into 

a region so dramatically unexplored by available collider data. We shall 

present the arguments of relevance in Section 3. Yet, this understanding is 

only in very general terms, no model can be considered reliable when it 

comes to details. Particularly crude is our understanding of nuclear 

interactions at such high energies and of how to relate them to nucleon-

nucleon interactions.   

Another major difficulty, which simulations have to face, is the 

prohibitive computing time required to follow in its totality the 

development of a shower. Sampling methods (thinning) are being used to 

cope with this problem but are not fully satisfactory (difficult handling of 

statistics and insufficient efficiency in computing time reduction). 

The idea of the present work is to make available a simulation 

allowing for the rapid production of large quantities of ultra high energy 

showers. Such simulation must be flexible enough to allow for changing 
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the values of the parameters that govern the behaviour of hadronic 

interactions at ultra high energies. This gain in computer time, in flexibility 

and in transparency has a price: one can no longer pretend to construct a 

precise model having the ability to describe the interaction in all its details. 

Such an approach is somehow orthogonal to that taken by the standard 

simulation codes in use in the cosmic ray community. 

The method used here consists in following the development of the 

sub-shower induced by a secondary only when its energy exceeds some 

predefined threshold. When it does not, one uses instead a parameterised 

description of the sub-shower, which makes it unnecessary to follow the 

details of its subsequent development. There are several arguments in 

favour of such an approach, which treats precisely and reliably the first 

interactions taking place in the development of the shower: the fluctuations 

observed in the development of showers induced by primaries of a same 

nature and of a same energy are dominated by the very first interactions; 

the difference between the developments of shower induced by primaries 

of different natures, say iron or proton, are governed by what happens at 

the first interaction; the lack of availability of adequate collider data affects 

only the higher energies. We shall return to this point in Section 3. 

 

1.2.3 Electromagnetic and hadronic showers 

The method just sketched has been applied successfully to the 

longitudinal development of electromagnetic showers, in particular to the 

study of ultra high energy phenomena such as the LPM (Landau-

Pomeranchuk-Migdal) and Perkins effects [6,7]. Two features make such 

studies particularly simple. First, to an excellent approximation, the only 

possible shower constituents are electrons, positrons and photons and their 

interactions with matter reduce to pair creation in the case of photons and 

to bremsstrahlung in the case of electrons and positrons. Second, the 

shower development depends on a single scale, the depth inside the 

atmosphere, measured in radiation lengths. Section 2 gives a summary of 

the results and expands the simulation to the description of the transverse 

shower development. 

At variance with the preceding situation, the development of 

hadronic showers is complicated by several factors:  
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– The description of the muon component, considered as an 

important element of the simulation, implies dealing with hadron decays; 

this introduces a new scale, the decay length, which is proportional to 

energy. The ratio between decay length and interaction or radiation lengths 

becomes therefore dependent on both energy and altitude. This is a major 

complication: the beauty of the single scale description applicable to 

electromagnetic showers is now lost.  

– Many different hadrons are in principle being produced; the 

present study ignores this complication and assumes all secondaries to be 

pions.  

– Hadronic interactions are dominated by meson-nucleus 

interactions, essentially pion-nitrogen interactions, of which, essentially, 

nothing is known in the energy domain of relevance. The description of 

high energy hadronic interactions is therefore inferred from what is known 

of proton-proton (or proton-antiproton) interactions. Sensible 

extrapolations need to be devised. 

Section 3 expands on such considerations and describes how we deal 

with hadronic interactions. Section 4 describes the parameterisations used 

in the simulation. Section 5 gives some results. 
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2. ELECTROMAGNETIC SHOWERS 

The longitudinal development of electromagnetic showers has been 

extensively studied in earlier work [8] with particular emphasis on the 

description of the Landau-Pomeranchuk-Migdal [9] and Perkins [10] 

effects. Both effects are essentially irrelevant to the present work and are 

ignored. Section 2.1 below summarizes the main results. However, the 

description of the transverse development was ignored in such earlier work. 

As it is an essential component of the lateral distribution function of 

UHECR showers, it needs to be taken in due account in the present 

simulation. Its treatment is described in Section 2.2. 

 

2.1 Longitudinal shower development 

 The present work uses a simple model of the longitudinal 

development of electron and photon showers, retaining only pair creation 

and bremsstrahlung as relevant elementary processes. At very high 

energies, showers contain so many particles that it is impracticable to 

follow each of them in a simulation. Most existing codes deal with this 

problem by using statistical approximations, such as thinning [11]. The 

approach used here is different: as soon as a shower particle, electron or 

photon, has energy lower than some threshold, it is replaced by a 

parameterised sub-shower profile, considerably reducing the complexity of 

the problem. All what needs to be done is then to devise a proper 

parameterisation of the shower profile and to calculate the dependence on 

energy of the parameters. In practice, the mean and rms values of the 

parameters are calculated once for all as a function of energy and the sub-

showers are generated accordingly with random Gaussian fluctuations of 

the parameters having the proper means and variances. 

   

2.1.1 Elementary processes 

 Showers may be initiated by an electron (or positron, here electron is 

to be understood as electron or positron) or a photon and any other particle 

that may be created in the cascade (such as μ
+
μ

− 
pairs from photon 

conversion) is ignored. Moreover the only processes considered are pair 

creation in the case of photons and bremsstrahlung in the case of electrons, 

implying that Compton scattering, photoelectric effect, and other processes 

that are important at lower energies are not taken into account. 
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 To a very good approximation, the probability d
2
P for a photon of 

energy E to convert in a medium of radiation length X0 over a thickness 

dx=X0dt (t has no dimension, dx and X0 are measured in g/cm
2
), into a pair 

having an electron of energy E in the interval [η, η+dη] (the positron 

energy being in the interval [E–η, E–η–dη] ) is   

   d
2
P={1– 4/3 η/E (1–η/E)}dη/E dt                           (2.1) 

The radiation length in air is 36 g/cm
2
.   

The dependence of Ed
2
P/dηdt on η/E is displayed in Figure 2.1 (left). 

It has a parabolic shape with a minimum of 2/3 corresponding to the 

symmetric case (electron and positron having equal energies). It is 

symmetric in the exchange of the electron and positron (η/E becoming     

1–η/E). Integration over η/E gives dP/dt=7/9: the photon distribution over 

the thickness traversed, x=tX0, is an exponential of the form exp(–7/9t).  

In the case of an incident electron of energy E, the probability d
2
P to 

radiate, over a distance dx=X0dt, a photon having an energy in the interval 

[η, η+dη] is, to a good approximation,  

  d
2
P= {4/3− 4/3 η/E + (η/E)

2
} dη/η dt                             (2.2) 

It is illustrated in Figure 2.1 (right) where d
2
P/(dt dη/η) is shown 

against η/E. It reaches a minimum of 8/9 at η/E =2/3 while being unity 

when η=E and being 4/3 when η=0. The total energy bremsstrahled per 

interval dt is  

∫η d
2
P = {4/3 E− 4/3 E/2 + E/3} dt = E dt.     (2.3) 

The remaining energy has therefore an exponential dependence over 

the thickness x=tX0 traversed of the form e
−t

. However, the number of 

photons bremsstrahled is infinite, an infinite number of zero energy 

photons being radiated. Introducing a cut-off ε, the number of radiated 

photons having energy in excess of ε is obtained by integration over η 

between ε and E: 

  dN={4/3lnE/ε −5/6+ 4/3 ε/E −1/2 (ε/E)
2
}dt               (2.4) 

The multiplication of particles in the cascade is counteracted by the 

energy losses which they suffer. The critical energy, Ec, is defined as the 

energy where an electron looses as much energy by ionisation as it does by 

radiation. It is equal to 80 MeV in air. The strategy adopted here is to 

consider bremsstrahlung explicitly only for photons having an energy in 

excess of Ec, namely setting ε=Ec in Relation 2.4. At E=10
21

eV with 
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ε=Ec=80MeV and dx=0.01X0, Relation 2.4 gives dN~{20−ln80−5/6}0.01~ 

0.15. Multiple photon radiation can therefore be safely neglected when 

using such small steps of 0.01 radiation lengths.  

The energy radiated in the form of photons of energy lower than Ec 

is, in such a step: 

           dE=0.01{4(Ec/E)/3−2(Ec/E)
2
/3+(Ec/E)

3
/3)E}                  (2.5)

  

  The electron energy loss is calculated in each slice dx=0.01X0 as the 

sum of the latter and of the ionization loss: 

  dE/dx=0.01Ec(1+0.15log10[E/Ec])dt                          (2.6)  

In addition any particle, electron or photon, having energy lower 

than 1.5 MeV is made to stop and to deposit its energy in the shower. Both 

this energy and the energy loss calculated using Relation 2.6 are deposited 

over two radiation lengths with a profile having a maximum at one 

radiation length.  

The model has been checked against the result of a detailed 

simulation [12] for 30 GeV electrons in iron (Ec= 20 MeV). The result is 

displayed in Figure 2.2 and shows quite good agreement given the high 

energy approximation used here.   

 

 

Figure 2.1 Left: Differential bremsstrahlung probability per unit of radiation length 

and per dη/η as a function of the fractional energy taken away by the photon.  

                  Right: Differential pair creation probability per unit of radiation length as 

a function of the fractional energy taken by the electron.  

                Full lines are without and dashed lines with LPM reduction. 
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2.1.2 Parameterisation of the profile 

 The form used here to parameterise the longitudinal shower profile is 

the standard Gaisser Hillas function [13]. 

S=Smax{[X−X*]/[Xmax−X*]}
[Xmax−X*]/w

exp([Xmax−X]/w)      (2.7) 

where S is the density of charged particles at depth X in the medium. In 

practice, SdX may be the sum of the charged particle track lengths in the 

transverse shower slice between X and X+dX, or the energy ionisation loss 

in that same slice, or even the amount of Cherenkov light produced in that 

same slice. At high energies, all three distributions are expected to have 

very similar shapes. The depth variable X is measured in g/cm
2
 with dX 

being the product of the local density by the thickness of the slice. In 

atmospheric air the dependence of density on altitude distorts X with 

respect to actual distances.  

 The quantity X* defines where the shower, understood as its charged 

particle components, starts developing. In the case of a photon, it starts at 

the location of the first pair creation while in the case of an electron it starts 

at X*=0. Obviously, once started, the shower develops independently from 

X* and S depends explicitly on X–X*. It is therefore sufficient to consider 

showers induced by electrons, i.e. having X*=0.  

X (r.l) 

r.l.) 
Figure 2.2: Average longitudinal profile of a shower induced by a 30 GeV electron 

in iron: full line, result of the present simulation; dotted line: EGS4 result [12]. 
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 Taking Smax and Xmax as units, one defines reduced variables η=S/Smax 

and ξ=X/Xmax. The reduced profile then reads η={ξexp(1–ξ)}
δ
 and depends 

on a single parameter δ=Xmax/w. Equivalently, lnη=δ(lnξ+1–ξ). 

 

 

 

 

 

 

 

 

 
 

Figure 2.3: Reduced profiles for different values of δ (2, 4, 8, 16, 32, 64 and 256). 

 

The reduced profile starts at 0 at origin as ξ
δ
 and approaches 0 again 

when ξ→∞. Differentiating gives dη/dξ=ηδ(1/ξ–1) which cancels for ξ=1 

where η reaches its maximum value, 1, independently from δ. Therefore, 

the real profile reaches its maximum value Smax at X=Xmax which justifies 

their names. The second derivative, d
2
η/dξ

2
= ηδ

2
(1/ξ–1)

2
–ηδ/ξ

2 
cancels for 

δ(1/ξ–1)
2
=1/ξ

2
 or ξ=1±1/√δ. While the turning points are equidistant from 

ξ=1 the profile is not at all symmetric around this value. As illustrated in 

Figure 2.3 it is significantly skewed, the more the larger δ. As δ>1, the 

profile starts tangent to the ξ axis. Analytic expressions of the mean, rms 

and integral values are given in Table 2.1 below, both for the reduced 

profile and the real one.   

The knowledge of <X> and of Rms(X) fixes w and Xmax. The knowledge of 

 = SdX  then fixes Smax. Explicitly, 

 = {<X>/ Rms(X)}
2
  1 Xmax = <X> /(+1) 

Smax =  +1
exp( )/(+1)/ Xmax  w = Xmax / 

It has been checked that <X>and =Rms(X)/<X> are not 

significantly correlated, thereby making it legitimate to apply independent 

Gaussian fluctuations to each.  

 


 

(2.8) 
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Table 2.1. Gaisser Hillas parameters for an electron (X*=0). 

Parameter Reduced profile Real profile 

Mean value 1+1/ X0+Xmax(1+w/Xmax) 

Rms value ((1+))/ ((w+ Xmax)w) 

Integral J() = e
(+1)/

 +1 SmaxXmaxJ(Xmax/W) 

 

The dependence on energy of the mean and rms values of <X> and ρ 

evaluated by the present simulation is illustrated in Figure 2.4. The 

parameters were calculated with full shower development up to an initial 

energy of 100 GeV. Above this energy, any shower particle having an 

energy smaller than 40% of the initial energy was replaced by a Gaisser 

Hillas profile evaluated for the proper values of the relevant parameters 

(after application of Gaussian fluctuations). The start of the profile was 

defined as X*=0 for electrons and was chosen at random with an 

exp(−[7/9]X*/X0) distribution for photons. As Ec=80 MeV is the only scale 

of the problem, the development of the profile scales in proportion with the 

logarithm of the energy as soon as Ec is negligible with respect to initial 

energy. 

Because of shower to shower fluctuations, the parameters that 

describe the average profile (obtained as superposition of a large number of 

different showers) are not exactly the same as the mean values of the 

parameters that describe individual profiles (as displayed in Figure 2.4). 

More precisely, the mean value of the former profile, <X'>, and that of the 

mean values of the latter profiles, <<X>>, are equal and can be 

parameterized as 3.22+2.34log10E. But the ρ parameter of the former 

profile, ρ', and the mean value of the ρ parameters of the latter profile, 

<ρ>, differ. In the case of the latter profiles, the rms values of the 

quantities <X> and ρ define the size of the shower to shower fluctuations. 

To a very good approximation, Rms(<X>) is constant and equal to 

0.94±0.01 radiation lengths. On the contrary, Rms(ρ) is found to decrease 

with energy as Rms(ρ)=0.001+16.20/(log10E+5.6)
3
.  
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Electromagnetic sub-showers of UHECR showers are essentially 

induced by the decay photons of π
0
 secondaries. As these are scalar 

mesons, the decay photons are emitted isotropically in the π
0 
rest frame: the 

distribution of the cosine u of the angle of the centre-of-mass photon 

momentum with the laboratory π
0
 momentum is uniform. Applying the 

proper Lorentz transformation and neglecting the π
0 

 mass in comparison 

with its energy, a π
0
 of energy E produces two photons of energies 

E
±
=½E(1±u). In the case of π

0 
decays, X0, being the smaller of two numbers 

having an exponential distribution of scale 9X0/7 is observed to have an 

exponential distribution of scale 9X0/14 as expected (Figure 2.5).  

Fits of the energy dependence of the mean and rms values of <X>–

X0 and ρ have again been performed over the whole range (2.5 to 10
11

 

Figure 2.4: Dependence on energy of the parameters defining the longitudinal shower 

profile. Upper panels: Mean value of <X> (left) and rms value of <X> (right); units 

are radiation lengths. Lower panels: Mean value of ρ (left) and rms value of ρ (right). 

The lines are the result of the fits described in the text. 
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GeV). They are illustrated in Figure 2.6 and their parameters are listed in 

Table 2.2.  

 

 

                         X1                                   X2                                   X0 

Figure 2.5: Distribution of X0 in the case of π
0
 decays. The left panels (X1 and X2) are for 

the decay photons. The right panel (expanded scale) is for the smaller of X1 and X2. 
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Figure 2.6: Dependence on the decimal logarithm of the energy of the mean values of 

<X>X0 (left panel) and  (right panel) for neutral pions. The vertical bars are not error 

bars but correspond to  the rms values of the distributions. Thicknesses are measured 

in percent of a radiation length. 
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Table 2.2: Parameterization of the simulated shower profiles at energies between 2.5 

GeV and 10
11

 GeV using forms A+Bx+Cx
2
+Dx

3
 with x=log10(E/10

10
MeV). 

 

2.2 Transverse shower development 

 The transverse profile of an electromagnetic shower induced by a π
0
 

decay is the result of two effects: the transverse momentum acquired by 

each photon in the decay process and the transverse development of each of 

the two showers induced by the photons. The former can be calculated 

exactly while the latter is described phenomenologically in terms of the so-

called Molière radius. 

 

2.2.1 π
0 
decays 

 In the π
0
 rest frame, the photon momenta are ½m, m being the π

0
 

mass, with longitudinal and transverse components equal to ±½mu and 

±½m√(1–u
2
) respectively (we recall that u is the cosine of the angle of the 

centre-of-mass photon momentum with the laboratory π
0
 momentum, p). In 

the laboratory frame, the longitudinal momenta become 

 A B C D 

Electrons 

Mean   <X>X0 3.91  2.30 - - 

Mean     (%) 51.5  6.7 0.6 2.4 10
2 

Rms   <X>X0 0.94  - - - 

Rms    (%) 6.77 −2.20 0.28 0.01 

Photons 

Mean <X>X0 3.45  2.30 - - 

Mean  (%) 55.2  7.7  0.7 2.9 10
2

 

Rms   <X>X0 0.81 - - - 

Rms    (%) 6.90 −2.37 0.31 0.01 

π
0
 

Mean   <X>X0 3.60  2.30 - - 

Mean     (%) 54.4  7.4 0.7 2.78 10
2

 

Rms   <X>X0 1.07  - - - 

Rms    (%) 7.92 −2.68 0.35 1.5 10
2
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½m(±γu+γβ)=½E(β±u) with γ=E/m and β=p/E=√(1-m
2
/E

2
)~1. Hence the 

angles α
±
 made by the photon momenta with respect to the pion momentum 

in the laboratory obey tanα
±
=±√(1–u

2
)/(1±u)/γ. 

Therefore tanα
+
=√{(1–u)/(1+u)}/γ and tanα

–
=√{(1+u)/(1–u)}/γ. 

However, geometry is not the only relevant factor in the making of 

the lateral distribution function (LDF): the quantity of energy deposited is 

also essential. To a good approximation, we may assume that the 

electron/photon energy that reaches ground is fully absorbed in the detector 

(it is a sensible approximation for the Auger Cherenkov detectors, not for a 

scintillator array). Then, the lateral distribution function is obtained by 

weighing each impact with whatever energy is left in the longitudinal 

development of the photon shower when it reaches ground. 

As the transverse momentum distribution of decay photons in the 

pion rest frame is invariant, the lateral scale of the LDF resulting from the 

decay of neutral pions into photons is proportional to the altitude       

Δz=(z–zground) above ground and inversely proportional to the primordial 

pion momentum (or energy when the pion is relativistic). Figure 2.7 shows 

the ground number and energy densities, dN/(2πrdr) and dE/(2πrdr) as a 

function of r, the distance (measured in metres) between the photon impact 

on ground and that of the pion momentum, in the case of a vertical pion of 

1 GeV decaying at an altitude of 1 km above ground. As explained above, 

in the case of energy density, each value of r is given a weight equal to the 

remaining energy of the photon shower. Ignoring such weights, the 

distribution takes the simple form 1/(R1
2
+r

2
)

2 
with R1=140 m. Indeed,  

r
+2

=Δz
2
tan

2
α

+
=(Δzm/E)

2
(1–u)/(1+u),  

u={(Δzm/E)
2
–r

+2
}/{(Δzm/E)

2
+r

+2
} 

 and dN/dr
+2

=du/dr
+2

≈1/(R1
2
+r

2
)

2
 with R1=mΔz/E=0.14 km=140 m.  

We see from Figure 2.7 that the number density obviously obeys the 

above relation while the energy density is significantly steeper. This is 

because oblique photon showers are more developed than vertical photon 

showers: the amount of energy deposited in the ground detectors is 

therefore larger for vertical showers, namely for smaller values of r, and 

smaller for larger values of r.   
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Figure 2.7: The ground number (black) and energy (red) densities are shown as a 

function of r, the distance between the photon impact on ground and that of the pion 

momentum, in the case of a vertical pion of 1 GeV decaying at an altitude of 1 km 

above ground. The line shows a fit to the relation given in the text. 

 

2.2.2 Photon showers 

In addition to the smearing due to decay, each photon generates an 

electromagnetic shower having a lateral extension characterized by the 

Molière radius. To a good approximation, the Molière radius is an energy-

independent constant equal to the radiation length multiplied by 21 MeV 

and divided by the critical energy [12]. Therefore it scales with the 

reciprocal of the atmospheric pressure. As the atmospheric pressure 

depends on altitude, it varies during shower development. However, in 

practice, we can retain the value at ground to be a good approximation 

because showers that are born at very high altitude will not reach ground: 

those that do, reach maximum development near ground. A form 

1/(R2
2
+r

2
)

2
 gives a good description of the global lateral extension of the 

energy density on ground. The radius R2 has to be adjusted in such a way 

that the energy deposited outside a cylinder of radius equal to the Molière 

radius be ~10% of the primordial photon energy [12]. The result is that R2 

must be equal to RMolière/3 =19.7 m (Figure 2.8). Combining both effects, 

Figure 2.9 displays the r distribution of the energy density for a 1 GeV 

neutral pion decaying 1 km above ground. The distribution is found to be 

reasonably well described by a form 1/(R*
2
+r

2
)

k
 with an index k and a 

radius R* that depend on E/Δz as illustrated in Figure 2.10. The 

corresponding parameters are given below:  
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R*=–2.0+38.4/(0.21+X) if X<1.5 and R*=20 if X≥1.5;  

k=1.25+2.04/(0.79+X) if X<1.9 and k=2 if X≥1.9.  

with X= log10(E/Δz) 

As we later use only the shape of such lateral distribution functions, 

we normalize them in such a way that the total energy integrated on ground 

is equal to unity. Namely, we use a form A/(R*
2
+r

2
)

k
 with                    

A=(k–1)R*
2(k–1)

/π. 

 

Figure 2.8: r-dependence of the ground density for a vertical 1 GeV vertical photon 

converting 1 km above ground (see text). 

 

 

Figure 2.9: Lateral distribution function (dN/dr
2
) for a 1 GeV/c neutral pion decaying 1 

km above ground. 
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Figure 2.10: Dependences of index k (left) and radius R* (right) on log10(E/Δz) with E in 

GeV and Δz in kilometres.  

 

The average transverse momentum given to a photon is ½m<(1–

u
2
)

½
>=

 
140/4=35 MeV while the transverse momentum given to the parent 

π
0 

 at the time of production is ~400 MeV. Moreover, the Molière radius is 

small enough not to cause an excessive broadening of the π
0 

lateral 

distribution function. We are therefore dealing with a small correction 

(especially since transverse momenta add up in quadrature), which justifies 

the approximations that have been used. 

 

2.2.3 Procedure to generate π
0
 showers 

The depth of the conversion of the first photon to convert is chosen 

with an exponential distribution of scale 9X0/14 as discussed earlier  

(Figure 2.5) and the longitudinal π
0 

shower profile is chosen according to 

the parameterisation given in Section 2.1 starting from that point. One then 

evaluates the energy ΔE that remains when the π
0 

shower reaches ground. 

In Sections 2.2.1 and 2.2.2 it has been assumed, for this reason, that the 

first photon converts at altitude z and the second photon at an altitude z–δz 

where δz was chosen at random with an exponential depth distribution of 

scale 9X0/7.  

In a first attempt, we have tried to handle π
0
’s globally, using a single 

Gaisser Hillass profile.
  

Following the results presented in Sections 2.2.1 

and 2.2.2, we proceeded as follows to generate the lateral distribution 

function: the radius R* and the index k are calculated as a function of E/Δz 

according to the parameterisations given in Section 2.2.2. Then, 10 values 
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of r are chosen at random with the distribution
1
 dN/dr

2
=1/(R*

2
+r

2
)

k
 with a 

weight ΔE/10. Note that the r dependence of what remains of the energy 

density on ground resulting from the larger shower development in the case 

of oblique incidence has already been taken into account in the 

parameterisation. Here, ΔE/10 is therefore a common normalization factor 

that applies to each r value. We have checked that this procedure is 

consistent with dealing with each photon separately, without using the 

parameterisation. An example is shown in Figure 2.11. In the worst case, 

E/Δz=1 (in units of GeV/km), namely with little energy reaching ground, 

the deviation between the two methods reaches ~20%. We have identified 

the cause of such a deviation as being the result of the parameterisation. 

The sum of two Gaisser Hillas profile is not, in general, a Gaisser Hillas 

profile. In our earlier studies of the LPM and other effects, the differences 

were largely irrelevant. Here, on the contrary, the tail energy ΔE, which 

may represent a minute fraction of the initial energy, defines the scale of 

the energy density on ground. We implemented a change in the algorithm, 

which corrects for the differences as a function of energy. This was 

successful in making the two tails equal. However, differences between the 

two longitudinal profiles subsisted in the first interaction length. As this is 

inherent to the parameterisation adopted, it would take another cosmetic 

change to correct for it. Finally, we preferred giving up the global treatment 

of π
0
 decays and decided to deal separately with each of the two photon 

showers. It must be realized that the difficulties that we have encountered 

are not specific to our method. The dominance of the shower tails in the 

lateral distribution function is a very general feature that is present, but 

largely hidden, in all simulation codes.   

In the case of a pion having a momentum making an angle θ with the 

vertical, the lateral distribution function is first evaluated in the plane 

perpendicular to the pion momentum and containing its impact on ground. 

Note that E/Δz must now be replaced by Ecosθ/Δz. Indeed, the contribution 

of the decay geometry to the LDF gives the cosθ factor and that of the 

Molière radius depends only on the atmospheric pressure on ground, which 

does not depend on θ. It is only the energy weighing procedure that 

depends on the depth (in g/cm
2
), rather than on Δz, but the parameterisation 

does not. The energy density on ground is then obtained by projection, 

                                                 
1
 A nice feature of this distribution is that it is simply generated by a form r=R*√(1/rand

1/(k-1)
–1) where 

rand is a number chosen at random in the interval [0,1]. 
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resulting in an ellipse having its major axis expanded radially by a 

factor 1/cosθ. 

 

Figure 2.11: Lateral distribution functions obtained for a 10 GeV π
0
 decaying at an 

altitude of 10 km (E/Δz=1) for a global π
0
 treatment (blue) and a separate treatment of 

the decay photon (red). The difference, ~20%, is mostly due to different tail energies. 
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3. HADRONIC INTERACTIONS 

3.1 Generalities 

3.1.1 Longitudinal phase space  

There is no doubt that the main feature of hadronic interactions is the 

peculiar distribution of the produced secondaries in phase space: a uniform 

distribution in rapidity and a steeply falling distribution in transverse 

momentum. L. Van Hove was first to state it explicitly [14] and to 

introduce the concept of what he called “longitudinal phase space”.  

Let us recall here that rapidity is to a Lorentz transformation what 

the polar angle and angle of rotation are to a space rotation around an axis. 

Namely a Lorentz transformation along z with velocity β=tanhα is a 

rotation of angle iα mixing space (z) and time (it, t being the time): 

z’=zcoshα+tsinhα=zcos(iα)–itsin(iα) 

t’=zsinhα+tcoshα, implying it’=zsin(iα)+itcos(iα). 

In particular, a uniform rapidity distribution remains uniform after a 

Lorentz transformation, the same way as an isotropic distribution remains 

isotropic after a rotation. Similarly, a Lorentz transformation is a 

translation in rapidity, the same way as a rotation is a translation in polar 

angle. When applied to the energy-momentum four-vector (E, pz), a 

Lorentz transformation increases, tan
–1

(iE/pz)=itanh
–1

(E/pz)=½iln{(E/pz–

1)/(E/pz+1)} by iα, the same way as a rotation increases the polar angle tan
–

1
(y/x) by α. As a function of E and pz, the rapidity reads therefore ½ln{(E–

pz)/(E+pz)}=ln{mT/(E+pz)} where mT is the transverse mass, mT=(m
2
+pT

2
)

½ 

with m being the mass and pT being the transverse momentum. For 

massless particles, pz/E=cosθ and the rapidity becomes the pseudo-rapidity, 

η=½ln{(1–cosθ)/(1+cosθ) =lntan(θ/2). 

 It was only after 1971, when the ISR started operation at CERN, that 

sufficient energy was available (up to 62 GeV in the centre of mass system) 

to give clear evidence for longitudinal phase space. Transverse momentum 

limitation was understood (rightly so) as a geometric effect, the limiting 

transverse momentum being of the order of 200 MeV/c, namely the Planck 

constant ħ divided by the proton radius, ~1 fm. However, at that time one 

thought (wrongly so) that this limitation was so strict that it would 

absolutely prevent the production of large transverse momenta. Indeed, 

large transverse momentum production is rare enough for us to ignore it in 

the present work. Yet it is the process that allowed probing matter at short 
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distances and paved the way to QCD and what was then called the “new 

physics”, namely the Standard Model.  

In the limit of infinite momentum, the invariance of a uniform 

rapidity distribution under Lorentz transformations implies that there exists 

no privileged momentum frame. Feynman was first to suggest a relation 

between such behaviour and a field theory of elementary hadron 

constituents that he called partons [15].   

   

3.1.2 Universality, leading effect, effective energy 

 When the ISR started operation, the structure of proton-proton final 

states could be studied in some detail. Evidence for longitudinal phase 

space was now clear and four additional general features were clearly 

revealed [16]: 

– the slow increase with energy of the total cross-section; 

– the existence of diffractive events, where one of the protons is excited, its 

debris being separated in rapidity from central production; 

– the existence of short range rapidity correlations, well described in terms 

of clusters, of which only part are resonances; 

– the presence of a leading effect implying that the largest rapidity particle 

essentially carries the quantum numbers of the initial proton. 

 These features have been the subject of numerous studies in the 

subsequent years and paved the way to the proton-antiproton collider 

experiments, of which UA5 [17] is a reference in the field. In particular, 

universality was noted between hadronization processes taking place in 

different interactions, such as electron-positron and proton-proton 

collisions. It was made particularly clear when the leading effect was 

subtracted [18] by using the concept of effective energy. 

 A phenomenological synthesis of experimental knowledge has been 

made in Monte Carlo descriptions of hadronic interactions used as 

simulations of various collider or cosmic ray experiments. In the present 

work, we refer in particular to the so-called HDPM code [19]. 
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3.1.3 Partons and QCD 

In the late seventies, Quantum Chromodynamics (QCD) became 

unanimously accepted as the theory of the strong interaction [20]. It 

assumes nothing more than an exact exchange symmetry between quarks of 

a same flavour, SU(3) colour, and gauge invariance. According to QCD, 

the elementary fermion fields are quarks of different flavours (three isospin 

doublets of electric charges 2/3 and –1/3: u-d, c-s, t-b) and the gauge 

bosons form a vector octet, the gluons. Contrary to SU(1), where the only 

possible coupling is the radiation of a gauge boson by a fermion, SU(3) 

includes also triple and quadruple couplings between gluons. At short 

distances, where reliable and accurate perturbative calculations are 

possible, the validity of QCD has been checked to better than a percent in 

many different sectors. However, at large distances, we are still unable to 

perform sensible calculations. Unfortunately, the interactions which are of 

relevance to the development of cosmic ray showers are low transverse 

momentum, large distance interactions: we can only hope for ad hoc 

models to describe them. 

 Yet, the ideas underlying QCD have been used to inspire such 

models. They allow for a qualitative understanding of the main features 

that have just been reviewed, in particular longitudinal phase space, 

universality of hadronization processes and leading effect. Such a 

commonly used model is the so-called dual parton model [21]. A general 

feature, common to all QCD-inspired models, is the description of particle 

production as a set of radiations occurring at closely spaced rapidities along 

a path (chain) connecting the constituents of the initial state hadrons, which 

are very distant in rapidity. Such a concept was already present before 

Figure 3.1 Dual multichain parton model representation of a two nucleons collision. 
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QCD in the frame of what was called the multiperipheral model [22].  In 

the dual parton model, the same idea is rejuvenated in the parton language, 

however ignoring gluons, at least in an explicit form.  Figure 3.1 shows a 

typical diagram.  
 

3.2 Overview of the method 

3.2.1 General strategy 

The main idea of the present approach, the replacement of sub-

showers by a parameterized description, implies the definition of two 

different energy ranges. 

A low energy range, 1 to 10
3
 GeV, is used to simulate proton 

induced showers without making use of any parameterisation of the 

hadronic sub-showers but making full use of the parameterisation of neutral 

pion showers introduced in the preceding chapter. In this energy range, the 

number of shower particles is small enough to follow each charged pion 

separately while keeping the computing time reasonable. Simulations are 

made by generating 10000 showers at each node of a grid in energy, 

altitude above ground and zenith angle. At each of these nodes, the 

longitudinal profile and the lateral distribution functions of 

electron/photons and of muons are parameterised. The parameters are 

evaluated for each shower and their mean values are calculated. Once this 

is completed, shower parameterisations can be performed by interpolation 

of the parameters between the nodes.  

In a second phase, one calculates the parameters in the high energy 

range, above 10
3
 GeV. One proceeds by iterations, in steps of half a unit of 

log10E, to extend the grid to higher energies. In this second step, one only 

follows secondaries having energies in excess of a predefined threshold of 

f  % of the primary energy, and replaces each lower energy interacting pion 

by a parameterized sub-shower. 

At this stage, one is in a position to generate large quantities of ultra 

high energy showers while playing with the parameters that govern the 

physics of the first interactions, in particular the nuclear model used to 

distinguish iron nuclei from protons.  

Many simplifications are being made in the description of the 

hadronic interactions, the most important being the assumption that all 

produced secondaries are pions. This is far from being the case; there is in 
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particular an important number of kaons among the secondaries. Moreover, 

many of these are decay products of resonances. The hope, in the present 

simplified description, is that the all-pion approximation can be used to 

describe reality, possibly at the price of adjusting parameters such as the 

pion decay time in a ad hoc manner. 

 

3.2.2 Longitudinal development: Atmospheric model, energy losses and 

multiple Coulomb scattering 

 The longitudinal development of the showers requires a description 

of the atmospheric pressure and of the electromagnetic interactions of 

charged particles with the atmosphere, causing energy losses and multiple 

Coulomb scattering.  

An exponential dependence of the atmospheric pressure as a function 

of altitude of the form p=p0exp(−z/∆z) has been retained. As illustrated in 

Figure 3.2, using ∆z=6.83 km and p0=1100 g/cm
2
 gives a good description 

of the standard atmospheric profiles mentioned in Reference 23.   

 Two kinds of energy losses are taken into account: ionization losses 

and radiation losses. They are supposed to be the same when the incident 

energy E is equal to the critical energy Ecrit taken as input parameter.  

 The differential ionization loss is taken to be 1.8 MeV g
−1

cm
2
 for    

 =2. For  >2 it increases by 0.11 MeV g
−1

cm
2
 for each unit of lnE. For 

<2 the differential ionization loss is taken to be inversely proportional to 

E, therefore inversely proportional to =(1+22
) and equal to 5 1.8 MeV 

g
−1

cm
2
 / . 

 The differential radiation loss is equal to E/X*rad where X*rad is an 

effective radiation length. The factor 1/X*rad is calculated from the 

definition of the critical energy: 1/X*rad=1.8 MeV g
−1

cm
2
/Ecrit. The values 

retained for the critical energies are 74’000 GeV for protons, 1’657 GeV for 

pions and 950 GeV for muons. 

Multiple scattering in a slice of x g/cm
2
 is calculated using a mean 

transverse momentum kick of 13.6(2x/Xrad) MeV where Xrad is the 

radiation length in air, 36.66 g/cm
2
. Projection on two orthogonal planes 

containing the particle momentum gets rid of the factor 2: the transverse 

momentum kick in each plane is therefore taken to have a Gaussian 

distribution around 0 of variance 13.6(x/Xrad) MeV. 
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3.3 Nucleon-nucleon interactions 

3.3.1 Generalities 

The general picture is that which emerges from collider 

measurements such as that of the UA5 experiment [17]: two leading 

particles, each taking some 25% of the available cms energy, separated 

from a central rapidity plateau by two rapidity gaps. The rapidity plateau is 

characterized by a rather uniform density distribution and important short 

range rapidity correlations that are well described by clusters. These are 

seen in charge as well as in rapidity and transverse momentum. Transverse 

momentum distributions are steeply falling, first exponentially as expected 

from the Fourier transform of a disk, and later as a power law as expected 

from interacting point like constituents.  

In the simulation of nucleon-nucleon interactions, the approach used 

in existing codes, such as HDPM, is to start from what is known, i.e. 

central production, and hope to get the forward production, which is 

essentially unknown, right. While being a very sensible approach, it does 

not allow for acting directly in a simple way on parameters such as the 

inelasticity. Here, instead, the inelasticity is taken as an adjustable 

parameter and the shape of the rapidity plateau is accessible in a 

transparent way. 

Figure 3.2: Dependence on altitude of the atmospheric density. The red curve is the 

exponential used in the present work: the blue curves are from Reference 10 for different 

seasons. 
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The general algorithm used in the code is as follows: 

a) Choose the fractions η1 and η2 of the cms energy √s carried by the 

leading particles (which retain the identities of the projectile and target 

particle respectively). The cms energy available for central production is 

therefore √s*=(1−η1−η2)√s. The leading particles do not carry any 

transverse momentum, and so do therefore globally the central secondaries, 

the longitudinal cms momentum and energy of which are now defined. 

b) Depending on √s*, choose the number of central clusters and the 

numbers of pions in each cluster in such a way as to reproduce the desired 

multiplicity distribution. Once this is done choose the width of the rapidity 

plateau in such a way as to conserve energy. Clusters are then distributed 

evenly at equal intervals on the plateau. A final adjustment of the cluster 

momenta is made to fine tune energy momentum conservation.  

A library of clusters containing between two and seven pions is 

created. The transverse momentum distribution of the pions is chosen to 

reproduce that desired for central pions, the clusters being given no 

transverse momentum of their own. While the width of the rapidity plateau 

and the cluster rapidity density increase linearly with log s*, implying that 

the cluster multiplicity increases quadratically with log s*, the number of 

pions per cluster and the transverse momentum distribution are nearly 

constant, increasing only slightly with log s*.  

 

3.3.2 Central clusters 

For a given number k of pions, central clusters are built by choosing 

the pion transverse momenta at random with a distribution of the form 

dN/dpt ≈(pt/p0)(1/[1+pt/p0])
n
. The mean transverse momentum is 

<pt>=2p0/(n−3). Typically, p0=1.3 GeV and n~10. Therefore, we fix         

n =10 and use p0 to scale the transverse momentum distribution as desired. 

The default value uses  

p0 (GeV)=3.5< pt > with  

<pt>= 0.3+0.00627 ln(4s*)  for  2√s* <132 

{0.442+0.0163 ln(4s*)}
2
        for  2√s* >132 

Figure 3.3 displays the transverse momentum distribution for  

<pt>=0.44 GeV. The blue curve is of the form dN/dpt 

≈(pt/p0)(1/[1+pt/p0])
10

 where  
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p0=3.5<pt>=1.47 GeV. The red histogram is the result of the algorithm 

used in the code.  

The case of clusters containing only two pions is particularly simple: 

the momenta are chosen back to back with an isotropic distribution. The 

case of clusters containing at least three pions is dealt with as described 

below. 

 

The azimuthal angles of the pion momenta are chosen at random 

between − and + and are adjusted in order to cancel the total transverse 

vector momentum. The adjustment is made by changing each azimuth φi by 

a quantity  

Δφi = (Acosφi +Bsinφi)/pti. The operation is repeated 3 times. In 

some cases, it is not possible to cancel the total transverse momentum by 

simply changing the azimuthal angles. In such cases (defined as having a 

total transverse momentum in excess of 1 MeV) a new choice of transverse 

momentum is made.  

Pion longitudinal momenta, pl, are calculated in the rest frame of the 

cluster. Choosing θ, the angle made by a pion momentum with the lab 

incident momentum, at random with a uniform cosθ distribution one 

calculates pl=pt/tanθ and boosts the whole cluster longitudinally in order to 

bring it to rest. The boost leaves the transverse momenta unchanged and 

does not too much disturb the isotropy of the cluster fragmentation as can 

be seen from Figure 3.4 left, which displays the final cosθ distribution, seen 

to be nearly uniform. 

Figure 3.3: Transverse momentum distribution. The result of the code (red) is compared 

to the analytical form (blue) given in the text. 
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Figure 3.4 centre displays cluster mass distributions for clusters 

containing n=3 to 7 pions separately. The value of <pt> was taken to be 0.4 

GeV. To a very good approximation the mean values <M> depend linearly 

on multiplicity n: <M>=0.58n−0.25. Figure 3.4 right displays the 

distributions of pion rapidities for each multiplicity separately in the cluster 

centre of mass system. They are nearly Gaussians with an rms deviation of 

~1/√2 units of rapidity, independently from multiplicity.  

 

3.3.3 Nucleon-nucleon and pion-nucleon interactions 

 The calculations are made in the centre of mass system of the 

interacting nucleons having incident energies Einc1 and Einc2. The energies 

carried away by the leading particles are written η1Einc1 and η2Einc2 where η1 

and η2 are chosen at random with Gaussian distributions having a mean 

value of 0.6 and an rms value of 0.15. The Gaussians are truncated in order 

for the leading particle energies to exceed the particle rest mass but not to 

exceed the initial particle energy. The total energy available for central 

production is √s*= √s−η1Einc1−η2Einc2. An effective energy √seff is defined 

as √seff = √s*/(1–<η1>/2–<η2>/2). As mentioned earlier, it makes more 

sense to use √s* rather than √s to decide on the properties of central 

production; it is therefore necessary to define √seff  in order to use the 

formulae given in References 19 and 23 as a function of √s. The pion 

transverse momentum distribution is taken from Reference 23 as are the 

Figure 3.4 Left: Cosθ distribution in the cluster rest frame for clusters containing at 

least three pions. Centre: Cluster mass distributions for clusters containing 3 to 7 pions 

separately. Right: Distribution of pion rapidities in the cluster rest frame for clusters 

containing 3 to 7 pions separately. 
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mean values of the total and charged multiplicity distributions. The number 

of pions per cluster is chosen at random between 2 and 7 with a Gaussian 

distribution having a mean value of 1.6+0.21 lns* and an rms value of 1. 

The total number of clusters ncl is chosen at random with an ad hoc 

distribution meant to properly reproduce the final multiplicity distribution. 

Its mean value, <ncl>, is taken to be the ratio of the mean values of the total 

multiplicities and of the number of pions per cluster. For convenience, a 

Gaussian distribution in ln(ncl/<ncl>+1) is used rather than a binomial 

distribution. Its mean value is {16+0.75l–0.31l
2
}/25 and its rms value is 

{5.7–0.56l+0.27l
2
}/25

 
where l=log10(√seff). Pions are defined to be charged 

or neutral at random in the ratio given in Reference 23. Figure 3.5 

compares the charged multiplicity distributions obtained here with those of 

Reference 23.  

         

 

Figure 3.5: Comparison of the charged multiplicity distributions obtained here (red) with 

those of Reference 23 (blue). Incident proton energies are 10
2
 (left) and 10

6
 (right) GeV. 

 

The cluster rapidity distributions are chosen according to a linear 

combination between a rectangular plateau (weight 0.75) and a triangular 

plateau (weight 0.25). They are then boosted to where they belong to (in 

general, η1 and η2 are different and the central production rest frame is not 

at rest in the global centre of mass frame used here). A final tuning of the 

pion rapidities achieves exact energy momentum conservation. Figure 3.6 

compares the rapidity distributions obtained here with those of      

Reference 23. 
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Finally, pion-nucleon interactions are treated the same way as 

nucleon- nucleon interactions apart from the values taken by the interaction 

cross section which are taken from Reference 23. 

 

    

Figure 3.6: Comparison of the pion rapidity distributions obtained here (red) with those 

of Reference 23 (blue). Incident proton energy are 102 (left) and 106 (right) GeV. 

 

3.4 Nuclei 

3.4.1 Generalities 

There exists no exact treatment of nuclei interactions. A standard 

approach, which is used here, is that of the Glauber model [24]. A first 

useful concept is that of wound nucleons: when two nuclei collide only 

some of their nucleons interact. These are defined as having their 

projection on a plane normal to the incident momentum contained within 

the intersection of the projections of both nuclei on the same plane. The 

calculation is straightforward once the nucleon radius and the Woods-

Saxon distribution of nucleons inside the nuclei are known. The interaction 

of wounded nucleons is treated as a cascade of each of the projectile 

nucleon on the set of wound nucleons that are on its path. This 

approximation is obviously very crude. It does not respect the projectile-

target symmetry which should be exact in the centre of mass of the 

collision. However, the backward secondaries are of little relevance and the 

model can be hoped to be adequate in practice.  
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In some models [25] an ad hoc adjustment of the above picture is 

made by adding a so-called “target excess” in the backward hemisphere. 

Here, it is not done. We prefer to leave the adjustment of the nuclear model 

to the last step, however at the price of being able to act on the first 

interactions only.  

 

3.4.2 Nucleon-air interactions 

 Nucleon-air interactions are taken to be nucleon-nitrogen interactions 

exclusively. The volume density distribution of the nitrogen nucleus is 

taken of the Woods-Saxon form: =1/{1+exp[(r-rN)/∆r]} with rN = r0N 14
⅓
 

and ∆r = 0.5 fm. The incident nucleon is taken to have a cross section 

log10 [mb]= 1.340+0.0642 log10 Einc [GeV]. The radius r0N is equal to 

1.02 fm at an incident lab energy of Einc= 10
6
 GeV. In order to match the 

resulting nucleon nitrogen cross section with that quoted in Reference 23 a 

very small adjustment of the nitrogen radius has been made by having r0N 

increases with Einc [GeV] as 1.056−0.0292(log10Einc)+0.0039 (log10Einc)
2
. 

An interaction is described by choosing an impact parameter b at random 

with a uniform b
2
 distribution and by calculating the number nwounded of 

nitrogen nucleons contained in the cylinder of cross section  having as 

axis the incident nucleon momentum. The incident nucleon is then made to 

interact successively with each of the nwounded nucleons. The pions produced 

in the interactions escape the nucleus without interacting further. On the 

contrary, the leading nucleon re-interacts nwounded −1 times, each time with 

a properly reduced energy. The nucleon nitrogen cross section is calculated 

as π(bmax)
2
 where bmax is the value of the impact parameter beyond which 

nwounded does not exceed 0.5 . 

 

3.4.3 Iron-air interactions 

 An iron nucleus of incident energy Einc is supposed to consist of 56 

nucleons, each having an energy Einc/56 and a momentum parallel to the 

incident momentum. This neglects the Fermi momentum which is of the 

order of the Planck constant divided by the iron radius, ~200/4=50 MeV. 

The distribution of nucleons inside the iron nucleus is calculated to 

reproduce the Woods-Saxon volume density with rFe=1.1 56
⅓
 = 4.21 fm 

and ∆r = 0.5 fm at incident lab energy of Einc= 10
6 
GeV. Correlations 

between nucleons are modelled with a hardcore interaction of radius        
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0.5 fm: namely, we make sure that the centres of two neighbour nucleons 

be never closer than d0 = 1 fm from each other. In order to reproduce the 

energy dependence of the iron-nitrogen cross section given in Reference 

23, the dimensions of the iron nucleus, rFe , ∆r and d0, are made to increase 

with energy using a scaling law of the form: 

1.031−0.0202(log10Einc)+0.0025(log10Einc)
2
. A library of 100 such nuclei 

has been produced. The match between the Woods-Saxon density and that 

obtained here is shown in Figure 3.7. As in the case of nucleon-nitrogen 

interactions, an impact parameter b between the centres of the two 

interacting nuclei is chosen at random. Each of the 56 iron nucleons is then 

considered in sequence. In cases where it interacts with the nitrogen 

nucleus, the interaction proceeds as defined in the preceding paragraph. 

Else, the nucleon escapes freely and will interact later on with another 

nitrogen nucleus independently from the other nucleons of the primary iron 

nucleus. The inelastic interaction cross section is again calculated as 

π(bmax)
2
 where bmax is the value of the impact parameter beyond which none 

of the iron nucleons interacts with the nitrogen nucleus.  

   

r 
  ( fm ) 

   

Figure 3.7: Comparison between the volume density distributions of an iron nucleus 

obtained from the present Monte Carlo code (histogram) and using the Wood Saxon 

form quoted in the text (full line).  
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3.4.4 Inelastic interaction cross sections 

 The inelastic interaction cross sections calculated as described above 

are compared with those used in Reference 23. As mentioned above, small 

adjustments have been made in order to obtain the desired energy 

dependence which we recall below [23]: 

 Nucleon nucleon: log10 [mb]= 1.340+0.0642 log10 Einc [GeV] 

 Nucleon air: log10 [mb]= 2.332+0.032 log10 Einc [GeV] 

 Iron air: log10 [mb]= 3.197+0.0142 log10 Einc [GeV] 

 The data of Reference 23 of relevance to this evaluation are 

reproduced below (Figure 3.8). 

 

3.5 Charged pion decays 

 Neutral pions are supposed to decay promptly before interacting. 

Note, however, that a 1.35 EeV neutral pion has a mean decay path of 250 

m. At 20 km altitude, this corresponds to 1.6 gcm
−2

 compared to a collision 

length of 47 gcm
−2

. 

 Charged pion decays are calculated in the pion cms, where the decay 

muon has an isotropic distribution as shown below. Electrons from muon 

decays are ignored; the muons are simply removed from the set of shower 

particles once they have decayed. 

 

 

 

 

Figure 3.8: Energy dependence of inelastic cross sections as given in Reference 23. Left 

panel: p,  and K interacting with nucleons. Middle panel: p,  and K interacting with air. 

Right panel: p, He, O and Fe interacting with air. 
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3.5.1 Vertical incidence 

For charged pion decays into muons and neutrinos, the same 

argument applies as for neutral pions: as the transverse momentum 

distribution of decay muons in the pion rest frame is invariant, the lateral 

scale of the lateral distribution function resulting from the decay of charged 

pions into muons and neutrinos is proportional to altitude above ground and 

inversely proportional to momentum (or energy when the pion is 

relativistic). Figure 3.9 shows the ground distribution of r
2
, r being the 

distance between the muon impact on ground and that of the pion 

momentum, in the case of a vertical pion of 1 GeV momentum decaying at 

an altitude of 1 km above ground. As in the case of neutral pions, dN/dr
2 

can be calculated exactly. Calling u the cosine of the angle between the 

pion and muon momenta in the pion rest frame, which has uniform 

distribution between −1 and 1, and p the muon momentum in the pion rest 

frame, energy conservation gives mπ=p+(p
2
+m

2
μ)

½
. 

Hence, p=½(m
2

π–m
2

μ)/mπ=37 MeV/c ,  and p/mπ~¼ and Eμ/mπ=1–p/mπ~¾. 

Writing g=zmπ/E,  r=ztanθ=g√(1−u
2
)/(3+u). Compared with the 

neutral pion case (Section 2.2.1), we have 3 instead of 1 in the 

denominator. In the relativistic limit, tanθ= γ–1√(1−u
2
)/(u+3) with γ=E/mπ 

, implying that r
2
=z

2
tan

2
α contains now a factor (1–u

2
)/(3+u)

2
, which, 

however, does not simplify as in the neutral pion case: there is no simple 

analytical expression of the associated lateral distribution function.  

 

 

Figure 3.9: Ground distribution of r2 in the case of a vertical pion of 1 GeV momentum 

decaying at an altitude of 1 km above ground (black) and its analytical description (red). 
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This distribution is smeared by the contribution of multiple 

scattering, energy loss and occasional muon decays. As in the case of 

neutral pions with the Molière radius, this smearing breaks the simple 

scaling law obeyed by decay as multiple scattering depends on the quantity 

of matter traversed.  

 Figure 3.10 shows the ground distribution of r
2
 for a muon having 

initial vertical momentum at an altitude of 10 km above ground and the 

energy distribution resulting from the decay of a vertical 10 GeV pion, 

namely ignoring decay transverse momentum. Here, r is the distance 

between the muon impact on ground and that of its initial momentum. The 

distribution results exclusively from multiple scattering, energy loss and 

occasional muon decays. A Gaussian fit is also shown. 

Figure 3.11 shows the dependence of the variance, , of the above r
2
 

distribution, multiplied by the pion initial energy and divided by the 

altitude above ground as a function of the altitude above ground. Defining 

z=z−zground, the dependence takes the forms E/z=−9.51z+29.1z
2/3

 

for z10 and E/z =46.25−0.565z  for z>10. 

 

 

Figure 3.10: Ground distribution of r2 in the case of a vertical pion of 10 GeV 

momentum decaying at an altitude of 10 km above ground (red) and its Gaussian fit 

(black). The decay transverse momentum has been ignored (see text). 
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Figure 3.11: Dependence of E/z  as a function of z (see text). 
 

 3.5.2 Oblique incidence 

 The arguments just developed for vertical incidence apply 

unchanged to the case of oblique incidence as illustrated in Figures 3.12 

and 3.13. Figure 3.12 shows the dependence of  on cos where  is the 

angle of the charged pion momentum in the case of a pion of 10 GeV 

momentum decaying at an altitude of 10 km above ground. It is of the form 

(cos)=(cos0)exp[1.75(1−cos)]. The agreement of the lateral 

distribution function with its parameterization is illustrated in Figure 3.13. 

 

Figure 3.12: Dependence of  on cos (see text). 



 55 

   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
                                                                                      

m 
   

   

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
                                                                                      

m 
   

Figure 3.13: Comparison of the LDF using the parameterization described in the text 

(black) with the real simulation (red) in the case of a 10 GeV momentum oblique pion 

(cos =0.7) decaying at an altitude of 10 km above ground (left) or 15 km above ground 

(right). 
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4. PARAMETERISATION OF SUB-SHOWERS 

4.1 General strategy 

The aim is to obtain parameterisations of three profiles as a function 

of three variables: the profiles are the longitudinal shower profile, the muon 

lateral distribution function and the electron/photon lateral distribution 

function; the variables are associated with the primary: they are its energy, 

the altitude of its first interaction and the cosine of its zenith angle of 

incidence. 

Neutral pions are made to decay into two photons that are 

immediately converted into parameterised sub-showers. Charged pions are 

made to decay or to interact according to the relative values taken by the 

decay length or interaction length. If they decay, they are simply converted 

into a muon according to the proper kinematics and using the parameterised 

form for the lateral distribution function. If they interact, the treatment they 

are given depends on the value of the ratio between their energy and the 

primordial energy. If this ratio is smaller than some predefined value f, say 

5%, they are converted into a parameterised sub-shower. If it is larger than 

the predefined threshold, the hadronic interaction model describes the 

interaction. This procedure allows for a very rapid treatment of the shower 

development up to the highest energies without requiring the use of 

thinning or other similar methods.  

It is sufficient to limit the parameterisation to pion primaries, as the 

only other hadrons of relevance are a very small number of nucleons. 

Indeed, the description of hadronic interactions used in the code does not 

centrally produce any nucleon (although, in reality, some nucleon-

antinucleon pairs are centrally produced). Even when one starts with an 

iron primary, one only has 56 nucleons to start with. Each of these, when it 

interacts with nitrogen molecules, does not produce any new nucleon, the 

target nucleons being ignored as having very small energies. The primary 

nucleon remains the only nucleon in the interaction products, it is the 

leading particle, and its energy decreases by a factor at each interaction. 

One is then left with a maximum of, say, 1000 nucleon-induced 

interactions (20 interactions times 50 nucleons), which is small enough a 

number not to require a particular treatment. The contribution of nucleons 

to the development of the shower is exclusively in their ability to interact 

and to produce pion secondaries, which will directly contribute. 
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The longitudinal profile is measured (in GeV per bin of a tenth of a 

radiation length) along the shower axis defined as the primary momentum 

and extends to very large depths, well beyond ground, the assumption 

being that atmospheric pressure keeps increasing according to the same 

exponential law as in the real atmosphere. The reason is to guarantee a 

sensible Gaisser Hillas parameterisation of the profile, which requires 

performing the fit well beyond shower maximum. However, in the case of 

the transverse profile, the energy contained in the shower when it reaches 

ground, referred to as the tail energy, is fully distributed in the lateral 

distribution function. The charged pion and muon contributions to the 

longitudinal profile are ignored: we only retain that of electromagnetic 

showers resulting from neutral pion decays, however normalized to their 

energies. The lateral distribution functions are given in the plane normal to 

the shower axis at its intersection with ground. Obtaining the measured 

signal requires a projection on ground and a simulation of the detector 

response. The muon distribution function is given in muons per square 

meters and the electron/photon distribution function is given in MeV per 

square meters. 

In a first phase, a grid is chosen in the parameter space that scans 

from 1 GeV to 1 TeV, from cosθ=0.5 to cosθ=1 and from z=0 to ~22 km 

above ground. Parameters are listed in Tables A1 to A3 in appendix. At 

each node of the grid lattice, 10000 showers are generated and the three 

profiles are parameterised. The parameters of a new shower are then 

calculated by interpolation. In practice, linear interpolations are used for 

cosθ and logarithmic interpolations for energy and altitude.  

In a second phase, parameterisation is extended to higher energies 

stepwise, by successive iterations. In order to keep manageable computing 

time, showers induced by pions having energy smaller than f % of the 

primary energy are no longer simulated but simply replaced by 

parameterised showers. This allows extending the parameter grid up to  

10
20 

eV. As a parameterised average shower replaces each sub-shower, 

shower-to-shower fluctuations are the exclusive result of fluctuations in the 

sample of interactions having incident energies exceeding f % of the 

primary energy.   

Updating the longitudinal profile is done by directly adding the new 

sub-shower profile to the already accumulated main shower profile, starting 

from the depth at which the interaction occurs. However, updating the 
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lateral distribution functions cannot be done so simply: the sub-shower 

lateral distribution function is parameterized as a function of distance rsub to 

the sub-shower axis but its contribution to the main shower must be in 

terms of the distance rmain to the main shower axis. At variance with the 

longitudinal case, rsub and rmain are not related by a simple analytic form. 

What is done in practice is to choose 1000 values of rsub at random, each 

with a weight of 1‰, and for each of these add the proper contribution to 

the rmain distribution. 

 

4.2 Longitudinal profiles below 1 TeV 

The parameterisation used is of the Gaisser Hillas form, 

S=Smax{[X−X*]/[Xmax−X*]}
[Xmax−X*]/w

exp([Xmax−X]/w) where Smax is such 

that the integral of the profile is the primary energy (i.e. the photon energy 

for the elementary photon sub-showers that make up the global profile) and 

X* is the depth at which the shower starts. In practice, when adding up 

photon contributions, X* is always set to zero because the new photon 

shower profile is added to the previously accumulated profile starting from 

the altitude where the photon converts rather than that where the pion 

decays. The same applies to the accumulated profile because it starts at the 

altitude where the primary pion interacts for the first time. In practice, only 

two parameters are required, which are simply related to the mean and rms 

values of the depth, as given by Relation 2.8: 

 = {<X>/ Rms(X)}
2
  1    Xmax = <X> /(+1)        w = Xmax / 

As noted in Section 2.2, Rms(X), the rms value measured on the sum 

of 10‟000 pion profiles, is not the mean value of the rms values of 

individual profiles. The choice made here, however, is to neglect shower-

to-shower fluctuations at low energies. At low energies, the number of 

neutral pions produced is small, sometime even zero. It is therefore a crude 

approximation to accept that the longitudinal profile obtained for neutral 

pions applies to the whole shower. It is another crude approximation to 

normalize the profile to the energy carried by the primary charged pion. 

The only justification for such a procedure is that the simulation is meant to 

be used well above the TeV range where these approximations are sensible. 

Therefore, at each node of the grid, it is sufficient to record two parameters 

to define the longitudinal profile.  
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Figure 4.1: Longitudinal profiles (black) obtained for a vertical charged pion decaying 

at a distance of 22 km above ground for seven grid energies (1, 3.2, 10, 32,100, 320 and 

1000 GeV). The lines show the result of the Gaisser Hillas parameterisation. Depths 

(abscissa) are in bins of a tenth of a radiation length and ordinate in GeV/bin. 

 

Finally, we recall that the longitudinal profile is evaluated by 

projection on the shower axis, defined by the primary momentum. The 

results of the parameterisation are listed in Table A1 and illustrated in 

Figure 4.1. 

 

4.3 Electron/photon lateral distribution functions below 1TeV 

The parameterisation used is of the form exp{a+b(lnr)
c
} with the 

distance r measured in meters and the lateral distribution function 

evaluated in MeV per square meter. At low energies it sometimes happens 

that the energy reaching ground is negligible and a sensible 

parameterisation cannot be directly produced. In such cases, the 

parameterisation is simply scaled down from that obtained at the higher 

energy node of the grid. As mentioned earlier, the distance r is measured 

from the intersection with ground of the momentum of the primary in the 

plane normal to this momentum. The results of the parameterisation are 

listed in Table A2 and illustrated in Figure 4.2 
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Figure 4.2: Electron/photon lateral distribution functions obtained for a vertical charged 

pion decaying at a distance of 1 km above ground for seven grid energies (1, 3.2, 10, 

32,100, 320 and 1000 GeV). The lines show the parameterisation. Distances (abscissa) 

are in m and the ordinate, in MeV/m
2
, is integrated over 10000 showers. 

 

4.4 Muon lateral distribution functions below 1TeV 

The parameterisation used is of the form exp{a+b(lnr)
c
} with the 

distance r measured in meters and the lateral distribution function 

evaluated in muons per square meter. At low energies (essentially 1 GeV) it 

sometimes happens that so few muons reach ground that a sensible 

parameterisation cannot be directly produced. In such cases, the 

parameterisation is simply scaled down from that obtained at the higher 

energy node of the grid. As mentioned earlier, the distance r is measured 

from the intersection with ground of the momentum of the primary in the 

plane normal to this momentum. At each node of the grid, 10000 showers 

are generated. Figure 4.3 illustrates the kind of results that are obtained, 

using as an example the case of a vertical muon decaying at an altitude of 1 

km above ground. The results of the parameterisation are listed in         

Table A3. 
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Figure 4.3 Muon lateral distribution functions obtained for a vertical charged pion 

decaying at a distance of 1 km above ground for seven grid energies (1, 3.2, 10, 32,100, 

320 and 1000 GeV). The lines show the parameterisation. Distances (abscissa) are in m 

and ordinate (in muons/m
2
) is integrated over 10000 showers.  

 

4.5 Parameterisations from 1 TeV to 0.1 ZeV 

Going up in energy still implies recording parameters that describe, 

at each node of the grid, the longitudinal profile and the lateral distribution 

functions. The difference with what was done below 1 TeV is that each 

interacting charged pion having energy lower than 5 % of the primary 

charged pion energy is now replaced by a parameterised sub-shower. This 

is done by interpolation between the values taken by the parameters in the 

relevant region of the grid. The technique used for the lateral distribution 

functions is the same as described in the last paragraph of Section 4.1.     

We recall that in the case of photons, whatever their energy, we 

replace them by sub-showers having Gaussian shower-to-shower 

fluctuations rather than by fixed average sub-showers. This is done by 

retaining, for each node of the grid, the values of <<X>>, Rms(<X>), <ρ> 

and Rms(ρ) as was done previously in Section 2 (see Figure 2.4).  

For the interpolation to work properly in the case of the lateral 

distribution functions, we noted that it should be made on a parameter 

b’=b{ln(400)}
c
 rather than on b, the former being much better behaved than 

the latter and much less correlated with c. Moreover, interpolation must 

now be made on z rather than on  z–zground in order to avoid divergences 
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near ground. Finally, on the low-energy-, low-altitude- and high-altitude-

edges of the grid, extrapolation outside the grid range is made on a 

exclusively, b and c being fixed at the values they have on the edge of the 

grid. Moreover, in the case of low energies, when such extrapolation 

requires going beyond a grid cell, the lateral distribution function is simply 

set to zero.  

In the case of the longitudinal profile, we recall that we continue the 

shower development below ground in order not to bias the parameterisation 

of the profile (which, however, is only used above ground). However, this 

implies that we need to account for the possible presence of charged pions 

reaching ground with some significant energy. Neglecting them or simply 

making them deposit their energy on ground would bias the profile to 

shorter depths. What is done, therefore, is to replace them by neutral pions 

as soon as they reach ground and add to the profile the corresponding 

contribution properly weighted. As, in practice, only low energy charged 

pions actually reach ground, this approximation is acceptable.  

Figures 4.4 to 4.6 display the lateral distribution functions and 

longitudinal profiles obtained for a vertical charged pion converting 22 km 

above ground for energies in geometrical progression between 10 TeV and 

0.1 ZeV.  

 

Figure 4.4. Muon lateral distribution functions obtained for primary vertical charged 

pions of energies in geometric progression from 10 TeV to 0.1 ZeV and interacting at 

22 km above ground. The units are metres in abscissa and muons per m2 in ordinate.   
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Figure 4.5. Electron/photon distribution functions obtained for primary vertical charged 

pions of energies in geometric progression from 10 TeV to 0.1 ZeV and interacting at 

22 km above ground. The units are metres in abscissa and MeV/m2 in ordinate.   

 

 

      

Figure 4.6. Longitudinal profiles obtained for primary vertical charged pions of energies 

in geometric progression from 10 TeV to 0.1 ZeV and interacting at 23.4 km a.s.l. The 

unit of abscissa is 0.1 radiation length, that of ordinate is such that the integral of the 

profile is the primary energy. The abscissa stops at sea level (29.0 radiation lengths).  
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MeV/m
2 

4.6 Proton-iron discrimination 

 As an illustration of the performance of the simulation, we consider 

its prediction in the UHECR regime for proton and iron primaries 

separately. Figure 4.7 shows the result obtained for the longitudinal profile. 

Both <Xmax> and Rms(Xmax) are seen to be consistent with the predictions 

of more sophisticated codes. It is a remarkable result in view of the 

crudeness of some of the approximations made in the present model. Figure 

4.8 shows the muon lateral distribution functions at 1 and 10 EeV for 

protons and iron separately. Their ratio is found to be 1.33, in excellent 

agreement with the prediction, 1.32, of other simulation codes (see Figure 

1.16). The electron-photon lateral distribution function is not directly 

accessible to experiment: the measured distribution is a weighted sum of 

the muon and electron-photon distributions, each including the 

corresponding detector response. In particular in the UHECR regime, 

where the distance of relevance is very large (1km in the Pierre Auger 

case), the resulting distribution is strongly detector dependent. 

 

 

 

Figure 4.7: <Xmax> and RMS(Xmax) compared with air shower simulations using different 

hadronic interaction models. 
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Figure 4.8: The muon lateral distribution functions at 1 EeV(left) and 10 EeV (right) for 

proton(black) and iron(red). 
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5. SUMMARY AND CONCLUSIONS  

We have conceived and written a computer code that simulates the 

development of extensive air showers up to extreme energies. The 

originality of our approach, flexibility, transparency and rapidity, are at the 

price of major simplifications and approximations in the underlying 

physics. Yet, its interest as a complement to existing sophisticated codes 

has been amply demonstrated with the simple illustrating example of iron-

proton discrimination.  

The cases of electromagnetic and hadronic showers have been 

treated separately. The former is much simpler in many respects: the 

shower development depends exclusively of the depth traversed, in g/cm
2
, 

which considerably eases the parameterization of the longitudinal and 

transverse profiles. On the contrary, the latter depends on two scales: the 

interaction length, in g/cm
2
, governs interactions while the decay length, in 

meters, governs decays. As both processes, interactions and decays, are in 

competition, the nice scaling properties of electromagnetic showers no 

longer apply in the case of hadronic showers. To face this difficulty, we 

have used a three-dimensional grid in energy, altitude and obliquity, at the 

nodes of which we have evaluated the parameters that describe the 

longitudinal and transverse profiles. Interpolation between the nodes of the 

grid provides the parameterization at any point in the three-dimensional 

space.  

The method consists in following the details of the shower 

development for high energy charged secondaries exclusively. All neutral 

pions and charged pions having an energy smaller than a given fraction of 

the primary energy are described as parameterised sub-showers using the 

parameter grid mentioned above. However, in the case of neutral pions 

having an energy smaller than the mentioned fraction of the primary 

energy, the parameterised forms are made to fluctuate around their mean 

with Gaussian deviations. The gain in computer time is considerable. The 

shower-to-shower fluctuations are nevertheless properly reproduced as are 

the differences between iron-induced and proton-induced showers, because, 

in both cases, they are determined by the first interactions exclusively.  

In practice, the description of the profiles has been limited to only 

three distributions: the longitudinal profile (essentially made of its 

electron/photon component), the electron/photon lateral distribution 

function and the muon lateral distribution function. Simple forms (Gaisser 
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Hillas for the longitudinal profile and exp{a+b(lnr)
c
} for the lateral 

distribution functions) have been found adequate. While these are sufficient 

for a large number of problems, additional information would sometimes 

be useful: examples are the distribution of the times of arrival of 

secondaries on ground and the distribution of the altitudes where the muons 

reaching ground have been produced. Such improvements would be 

valuable upgrades of the existing codes and should be implemented as soon 

as sufficient experience will have been gained with the present code. 
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6. ANNEX  

Table A1:Parameters of the longitudinal profile using a Gaisser Hillas form 

S=Smax{X/Xmax}
Xmax/w

exp([Xmax−X]/w) where =Rms(X)/<X> 

 

 
 

Energy 

(GeV) 

Altitude 

(km) cosθ 
Mean 

<X>X0 

Mean  

(%) 

1 1 1 2.35 64.5 

1 2.2 1 2.55 67.5 

1 4.6 1 2.55 68.5 

1 10 1 2.55 69.5 

1 22 1 2.55 69.5 

3 1 1 3.45 61.5 

3 2.2 1 3.65 61.5 

3 4.6 1 3.75 62.5 

3 10 1 3.75 62.5 

3 22 1 3.75 62.5 

10 1 1 4.45 57.5 

10 2.2 1 4.65 57.5 

10 4.6 1 4.65 58.5 

10 10 1 4.65 58.5 

10 22 1 4.65 58.5 

32 1 1 5.25 53.5 

32 2.2 1 5.65 53.5 

32 4.6 1 5.65 54.5 

32 10 1 5.45 54.5 

32 22 1 5.45 54.5 

100 1 1 6.05 50.5 

100 2.2 1 6.65 49.5 

100 4.6 1 6.95 51.5 

100 10 1 6.75 52.5 

100 22 1 6.35 51.5 

320 1 1 6.85 47.5 

320 2.2 1 7.55 46.5 

320 4.6 1 8.25 48.5 

320 10 1 8.35 51.5 

320 22 1 7.75 51.5 

1000 1 1 7.85 45.5 

1000 2.2 1 8.55 43.5 

1000 4.6 1 9.45 45.5 

1000 10 1 9.85 48.5 

1000 22 1 9.55 50.5 

 

Energy 

(GeV) 

Altitude 

(km) cosθ 
Mean 

<X>X0 

Mean  

(%) 

1 1 0.9 2.45 65.5 

1 2.2 0.9 2.55 68.5 

1 4.6 0.9 2.65 68.5 

1 10 0.9 2.65 69.5 

1 22 0.9 2.65 69.5 

3 1 0.9 3.55 61.5 

3 2.2 0.9 3.75 62.5 

3 4.6 0.9 3.75 62.5 

3 10 0.9 3.75 62.5 

3 22 0.9 3.75 63.5 

10 1 0.9 4.45 56.5 

10 2.2 0.9 4.75 57.5 

10 4.6 0.9 4.75 58.5 

10 10 0.9 4.65 57.5 

10 22 0.9 4.65 58.5 

32 1 0.9 5.25 53.5 

32 2.2 0.9 5.65 53.5 

32 4.6 0.9 5.65 54.5 

32 10 0.9 5.45 54.5 

32 22 0.9 5.45 54.5 

100 1 0.9 6.15 49.5 

100 2.2 0.9 6.75 49.5 

100 4.6 0.9 6.95 52.5 

100 10 0.9 6.75 52.5 

100 22 0.9 6.25 51.5 

320 1 0.9 6.95 47.5 

320 2.2 0.9 7.75 46.5 

320 4.6 0.9 8.35 48.5 

320 10 0.9 8.25 51.5 

320 22 0.9 7.75 51.5 

1000 1 0.9 7.95 45.5 

1000 2.2 0.9 8.75 43.5 

1000 4.6 0.9 9.65 45.5 

1000 10 0.9 9.85 49.5 

1000 22 0.9 9.55 50.5 

 

Energy 

(GeV) 

Altitude 

(km) cosθ 
Mean 

<X>X0 

Mean  

(%) 

1 1 0.8 2.45 66.5 

1 2.2 0.8 2.65 68.5 

1 4.6 0.8 2.65 68.5 

1 10 0.8 2.65 69.5 

1 22 0.8 2.65 70.5 

3 1 0.8 3.55 61.5 

3 2.2 0.8 3.75 62.5 

3 4.6 0.8 3.75 62.5 

3 10 0.8 3.75 63.5 

3 22 0.8 3.75 63.5 

10 1 0.8 4.55 56.5 

10 2.2 0.8 4.75 57.5 

10 4.6 0.8 4.75 58.5 

10 10 0.8 4.75 58.5 

10 22 0.8 4.65 58.5 

32 1 0.8 5.35 52.5 

32 2.2 0.8 5.75 53.5 

32 4.6 0.8 5.65 54.5 

32 10 0.8 5.45 54.5 

32 22 0.8 5.45 54.5 

100 1 0.8 6.25 49.5 

100 2.2 0.8 6.85 49.5 

100 4.6 0.8 6.95 52.5 

100 10 0.8 6.75 52.5 

100 22 0.8 6.35 51.5 

320 1 0.8 7.05 46.5 

320 2.2 0.8 7.95 46.5 

320 4.6 0.8 8.45 49.5 

320 10 0.8 8.25 52.5 

320 22 0.8 7.75 51.5 

1000 1 0.8 8.05 44.5 

1000 2.2 0.8 8.95 43.5 

1000 4.6 0.8 9.75 46.5 

1000 10 0.8 9.95 50.5 

1000 22 0.8 9.55 50.5 

 
 

Energy 

(GeV) 

Altitude 

(km) cosθ 
Mean 

<X>X0 

Mean  

(%) 

1 1 0.7 2.55 66.5 

1 2.2 0.7 2.65 67.5 

1 4.6 0.7 2.65 68.5 

1 10 0.7 2.65 68.5 

1 22 0.7 2.65 71.5 

3 1 0.7 3.65 61.5 

3 2.2 0.7 3.75 62.5 

3 4.6 0.7 3.75 62.5 

3 10 0.7 3.75 62.5 

3 22 0.7 3.75 63.5 

10 1 0.7 4.65 56.5 

10 2.2 0.7 4.75 57.5 

10 4.6 0.7 4.75 57.5 

10 10 0.7 4.75 58.5 

10 22 0.7 4.65 58.5 

32 1 0.7 5.55 52.5 

32 2.2 0.7 5.75 53.5 

32 4.6 0.7 5.75 54.5 

32 10 0.7 5.55 54.5 

32 22 0.7 5.45 54.5 

100 1 0.7 6.35 48.5 

100 2.2 0.7 6.95 49.5 

100 4.6 0.7 7.05 52.5 

100 10 0.7 6.65 52.5 

100 22 0.7 6.25 51.5 

320 1 0.7 7.25 46.5 

320 2.2 0.7 8.15 46.5 

320 4.6 0.7 8.65 50.5 

320 10 0.7 8.35 52.5 

320 22 0.7 7.55 50.5 

1000 1 0.7 8.15 44.5 

1000 2.2 0.7 9.15 43.5 

1000 4.6 0.7 10.05 47.5 

1000 10 0.7 9.95 51.5 

1000 22 0.7 9.55 50.5 

 

Energy 

(GeV) 

Altitude 

(km) cosθ 
Mean 

<X>X0 

Mean  

(%) 

1 1 0.6 2.55 67.5 

1 2.2 0.6 2.65 67.5 

1 4.6 0.6 2.65 68.5 

1 10 0.6 2.65 68.5 

1 22 0.6 2.65 72.5 

3 1 0.6 3.75 61.5 

3 2.2 0.6 3.75 62.5 

3 4.6 0.6 3.75 62.5 

3 10 0.6 3.75 62.5 

3 22 0.6 3.75 63.5 

10 1 0.6 4.75 55.5 

10 2.2 0.6 4.75 56.5 

10 4.6 0.6 4.75 57.5 

10 10 0.6 4.75 58.5 

10 22 0.6 4.75 58.5 

32 1 0.6 5.65 51.5 

32 2.2 0.6 5.85 53.5 

32 4.6 0.6 5.75 53.5 

32 10 0.6 5.55 53.5 

32 22 0.6 5.45 54.5 

100 1 0.6 6.55 48.5 

100 2.2 0.6 7.15 50.5 

100 4.6 0.6 7.15 52.5 

100 10 0.6 6.65 52.5 

100 22 0.6 6.25 51.5 

320 1 0.6 7.45 45.5 

320 2.2 0.6 8.35 47.5 

320 4.6 0.6 8.75 51.5 

320 10 0.6 8.25 52.5 

320 22 0.6 7.55 50.5 

1000 1 0.6 8.45 43.5 

1000 2.2 0.6 9.45 43.5 

1000 4.6 0.6 10.25 48.5 

1000 10 0.6 10.05 51.5 

1000 22 0.6 9.35 50.5 

 

Energy 

(GeV) 

Altitude 

(km) cosθ 
Mean 

<X>X0 

Mean  

(%) 

1 1 0.5 2.55 67.5 

1 2.2 0.5 2.75 68.5 

1 4.6 0.5 2.65 68.5 

1 10 0.5 2.65 69.5 

1 22 0.5 2.65 71.5 

3 1 0.5 3.75 61.5 

3 2.2 0.5 3.85 62.5 

3 4.6 0.5 3.75 62.5 

3 10 0.5 3.75 63.5 

3 22 0.5 3.85 64.5 

10 1 0.5 4.85 55.5 

10 2.2 0.5 4.85 56.5 

10 4.6 0.5 4.75 57.5 

10 10 0.5 4.75 57.5 

10 22 0.5 4.75 58.5 

32 1 0.5 5.85 51.5 

32 2.2 0.5 5.95 53.5 

32 4.6 0.5 5.75 53.5 

32 10 0.5 5.55 53.5 

32 22 0.5 5.45 54.5 

100 1 0.5 6.75 48.5 

100 2.2 0.5 7.35 51.5 

100 4.6 0.5 7.15 52.5 

100 10 0.5 6.65 51.5 

100 22 0.5 6.35 51.5 

320 1 0.5 7.75 45.5 

320 2.2 0.5 8.65 47.5 

320 4.6 0.5 8.85 52.5 

320 10 0.5 8.25 52.5 

320 22 0.5 7.55 49.5 

1000 1 0.5 8.75 42.5 

1000 2.2 0.5 9.95 44.5 

1000 4.6 0.5 10.45 50.5 

1000 10 0.5 10.05 51.5 

1000 22 0.5 9.25 50.5 
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Table A2:  Parameters of the electron/photon lateral distribution function 

(MeV/m
2
) using a form exp{a+b(lnr)

c
} with the distance r measured in meters 

 
Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –8.92E+00 –5.90E–06 7.10E+00 

1 2 1 –1.26E+01 –2.86E–07 8.31E+00 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –5.80E+00 –1.13E–04 5.80E+00 

3.2 2 1 –8.55E+00 –7.96E–06 6.90E+00 

3.2 5 1 –1.32E+01 –6.07E–07 7.90E+00 

3.2 10 1 0.00E+00 0.00E+00 0.00E+00 

3.2 22 1 0.00E+00 0.00E+00 0.00E+00 

10 1 1 –3.09E+00 –3.02E–03 4.20E+00 

10 2 1 –5.53E+00 –3.34E–04 5.14E+00 

10 5 1 –9.06E+00 –2.23E–04 5.16E+00 

10 10 1 –1.46E+01 –9.81E–04 4.16E+00 

10 22 1 0.00E+00 0.00E+00 0.00E+00 

32 1 1 –5.78E–01 –1.96E–02 3.30E+00 

32 2 1 –2.46E+00 –3.49E–03 4.10E+00 

32 5 1 –5.48E+00 –1.48E–03 4.40E+00 

32 10 1 –1.05E+01 –2.61E–04 5.10E+00 

32 22 1 0.00E+00 0.00E+00 0.00E+00 

100 1 1 1.73E+00 –5.08E–02 2.90E+00 

100 2 1 5.10E–01 –2.07E–02 3.30E+00 

100 5 1 –2.02E+00 –9.18E–03 3.60E+00 

100 10 1 –5.57E+00 –7.41E–03 3.60E+00 

100 22 1 –9.79E+00 –2.22E–03 4.10E+00 

320 1 1 3.98E+00 –1.24E–01 2.50E+00 

320 2 1 3.09E+00 –7.40E–02 2.70E+00 

320 5 1 1.25E+00 –4.36E–02 2.90E+00 

320 10 1 –1.38E+00 –2.20E–02 3.20E+00 

320 22 1 –3.57E+00 –1.70E–02 3.30E+00 

1000 1 1 5.78E+00 –1.72E–01 2.40E+00 

1000 2 1 5.32E+00 –1.47E–01 2.40E+00 

1000 5 1 3.94E+00 –9.31E–02 2.60E+00 

1000 10 1 1.84E+00 –5.74E–02 2.80E+00 

1000 22 1 –3.12E–01 –2.52E–02 3.20E+00 

 

 

 

 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –9.27E+00 –2.43E–07 8.80E+00 

1 2 1 –1.34E+01 –3.80E–10 1.16E+01 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –6.11E+00 –8.65E–05 5.90E+00 

3.2 2 1 –8.91E+00 –5.00E–05 5.90E+00 

3.2 5 1 –1.47E+01 –2.22E–07 8.30E+00 

3.2 10 1 0.00E+00 0.00E+00 0.00E+00 

3.2 22 1 0.00E+00 0.00E+00 0.00E+00 

10 1 1 –3.27E+00 –2.41E–03 4.30E+00 

10 2 1 –5.94E+00 –3.11E–04 5.15E+00 

10 5 1 –1.00E+01 –1.03E–04 5.50E+00 

10 10 1 0.00E+00 0.00E+00 0.00E+00 

10 22 1 0.00E+00 0.00E+00 0.00E+00 

32 1 1 –7.43E–01 –1.36E–02 3.50E+00 

32 2 1 –2.75E+00 –3.40E–03 4.10E+00 

32 5 1 –6.52E+00 –9.12E–04 4.60E+00 

32 10 1 –1.18E+01 –2.65E–04 5.10E+00 

32 22 1 0.00E+00 0.00E+00 0.00E+00 

100 1 1 1.64E+00 –4.95E–02 2.90E+00 

100 2 1 1.60E–01 –1.94E–02 3.30E+00 

100 5 1 –2.56E+00 –7.48E–03 3.70E+00 

100 10 1 –6.70E+00 –3.20E–03 4.05E+00 

100 22 1 –1.17E+01 –1.14E–04 5.60E+00 

320 1 1 3.84E+00 –1.03E–01 2.60E+00 

320 2 1 2.92E+00 –7.24E–02 2.70E+00 

320 5 1 7.69E–01 –3.53E–02 3.00E+00 

320 10 1 –1.83E+00 –2.68E–02 3.10E+00 

320 22 1 –4.47E+00 –2.12E–02 3.20E+00 

1000 1 1 5.84E+00 –1.98E–01 2.30E+00 

1000 2 1 5.16E+00 –1.34E–01 2.45E+00 

1000 5 1 3.69E+00 –1.06E–01 2.50E+00 

1000 10 1 1.01E+00 –4.50E–02 2.90E+00 

1000 22 1 –1.13E+00 –2.09E–02 3.30E+00 
 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –1.06E+01 –1.81E–10 1.23E+01 

1 2 1 –1.41E+01 –2.33E–06 7.07E+00 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –6.37E+00 –1.14E–04 5.72E+00 

3.2 2 1 –9.77E+00 –1.28E–06 7.74E+00 

3.2 5 1 –1.67E+01 –8.22E–06 6.30E+00 

3.2 10 1 0.00E+00 0.00E+00 0.00E+00 

3.2 22 1 0.00E+00 0.00E+00 0.00E+00 

10 1 1 –3.54E+00 –2.29E–03 4.30E+00 

10 2 1 –6.26E+00 –6.02E–04 4.80E+00 

10 5 1 –1.16E+01 –5.95E–05 5.70E+00 

10 10 1 0.00E+00 0.00E+00 0.00E+00 

10 22 1 0.00E+00 0.00E+00 0.00E+00 

32 1 1 –1.07E+00 –1.47E–02 3.40E+00 

32 2 1 –3.27E+00 –2.64E–03 4.20E+00 

32 5 1 –7.54E+00 –4.80E–04 4.90E+00 

32 10 1 –1.40E+01 –3.05E–04 4.90E+00 

32 22 1 0.00E+00 0.00E+00 0.00E+00 

100 1 1 1.51E+00 –4.78E–02 2.90E+00 

100 2 1 –1.20E–01 –2.22E–02 3.20E+00 

100 5 1 –3.02E+00 –1.06E–02 3.50E+00 

100 10 1 –7.61E+00 –6.21E–03 3.70E+00 

100 22 1 0.00E+00 0.00E+00 0.00E+00 

320 1 1 3.75E+00 –1.00E–01 2.60E+00 

320 2 1 2.64E+00 –6.97E–02 2.70E+00 

320 5 1 2.99E–01 –3.43E–02 3.00E+00 

320 10 1 –3.02E+00 –1.42E–02 3.40E+00 

320 22 1 –6.27E+00 –8.99E–03 3.60E+00 

1000 1 1 5.82E+00 –1.95E–01 2.30E+00 

1000 2 1 5.00E+00 –1.41E–01 2.40E+00 

1000 5 1 3.16E+00 –8.71E–02 2.60E+00 

1000 10 1 5.22E–01 –5.36E–02 2.80E+00 

1000 22 1 –1.70E+00 –5.46E–02 2.80E+00 

 

 

 

 

 

 

 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –1.04E+01 –2.96E–06 7.23E+00 

1 2 1 –1.55E+01 –1.13E–06 7.21E+00 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –6.74E+00 –6.19E–05 6.01E+00 

3.2 2 1 –1.09E+01 –2.03E–07 8.56E+00 

3.2 5 1 0.00E+00 0.00E+00 0.00E+00 

3.2 10 1 0.00E+00 0.00E+00 0.00E+00 

3.2 22 1 0.00E+00 0.00E+00 0.00E+00 

10 1 1 –4.12E+00 –5.83E–04 5.00E+00 

10 2 1 –7.33E+00 –7.75E–05 5.80E+00 

10 5 1 –1.33E+01 –4.20E–06 6.94E+00 

10 10 1 0.00E+00 0.00E+00 0.00E+00 

10 22 1 0.00E+00 0.00E+00 0.00E+00 

32 1 1 –1.23E+00 –1.04E–02 3.60E+00 

32 2 1 –3.87E+00 –2.07E–03 4.30E+00 

32 5 1 –8.88E+00 –4.28E–04 4.90E+00 

32 10 1 0.00E+00 0.00E+00 0.00E+00 

32 22 1 0.00E+00 0.00E+00 0.00E+00 

100 1 1 1.20E+00 –3.25E–02 3.10E+00 

100 2 1 –5.40E–01 –1.81E–02 3.30E+00 

100 5 1 –3.98E+00 –8.29E–03 3.60E+00 

100 10 1 –1.25E+01 –3.08E–06 7.37E+00 

100 22 1 0.00E+00 0.00E+00 0.00E+00 

320 1 1 3.62E+00 –9.63E–02 2.60E+00 

320 2 1 2.32E+00 –6.72E–02 2.70E+00 

320 5 1 –3.15E–01 –3.93E–02 2.90E+00 

320 10 1 –4.11E+00 –1.65E–02 3.30E+00 

320 22 1 –1.05E+01 –5.95E–04 4.90E+00 

1000 1 1 5.59E+00 –1.58E–01 2.40E+00 

1000 2 1 4.61E+00 –1.06E–01 2.55E+00 

1000 5 1 2.41E+00 –8.06E–02 2.60E+00 

1000 10 1 –1.17E+00 –2.69E–02 3.10E+00 

1000 22 1 –3.23E+00 –3.81E–02 3.00E+00 
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Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –1.16E+01 –3.05E–06 7.01E+00 

1 2 1 –1.63E+01 –3.02E–07 7.82E+00 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –7.48E+00 –5.70E–05 5.95E+00 

3.2 2 1 –1.19E+01 –1.17E–06 7.59E+00 

3.2 5 1 0.00E+00 0.00E+00 0.00E+00 

3.2 10 1 0.00E+00 0.00E+00 0.00E+00 

3.2 22 1 0.00E+00 0.00E+00 0.00E+00 

10 1 1 –4.52E+00 –5.47E–04 5.00E+00 

10 2 1 –8.26E+00 –1.75E–04 5.30E+00 

10 5 1 –1.46E+01 –1.31E–04 5.30E+00 

10 10 1 0.00E+00 0.00E+00 0.00E+00 

10 22 1 0.00E+00 0.00E+00 0.00E+00 

32 1 1 –1.66E+00 –9.46E–03 3.60E+00 

32 2 1 –4.78E+00 –1.83E–03 4.30E+00 

32 5 1 –1.00E+01 –5.99E–04 4.80E+00 

32 10 1 0.00E+00 0.00E+00 0.00E+00 

32 22 1 0.00E+00 0.00E+00 0.00E+00 

100 1 1 1.03E+00 –3.15E–02 3.10E+00 

100 2 1 –1.14E+00 –1.69E–02 3.30E+00 

100 5 1 –5.16E+00 –6.58E–03 3.70E+00 

100 10 1 –1.38E+01 –4.24E–04 4.90E+00 

100 22 1 0.00E+00 0.00E+00 0.00E+00 

320 1 1 3.39E+00 –7.92E–02 2.70E+00 

320 2 1 1.88E+00 –5.57E–02 2.80E+00 

320 5 1 –1.12E+00 –3.82E–02 2.90E+00 

320 10 1 –5.13E+00 –2.69E–02 3.05E+00 

320 22 1 –9.59E+00 –1.73E–02 3.45E+00 

1000 1 1 5.55E+00 –1.56E–01 2.40E+00 

1000 2 1 4.26E+00 –1.10E–01 2.50E+00 

1000 5 1 1.96E+00 –9.73E–02 2.50E+00 

1000 10 1 –1.57E+00 –5.09E–02 2.80E+00 

1000 22 1 –4.65E+00 –3.60E–04 5.76E+00 
 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –1.24E+01 –3.18E–07 8.04E+00 

1 2 1 –1.70E+01 –3.18E–07 8.04E+00 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –8.36E+00 –5.67E–06 7.09E+00 

3.2 2 1 –1.37E+01 –5.01E–10 1.13E+01 

3.2 5 1 0.00E+00 0.00E+00 0.00E+00 

3.2 10 1 0.00E+00 0.00E+00 0.00E+00 

3.2 22 1 0.00E+00 0.00E+00 0.00E+00 

10 1 1 –5.14E+00 –6.89E–04 4.80E+00 

10 2 1 –9.39E+00 –3.35E–04 4.90E+00 

10 5 1 0.00E+00 0.00E+00 0.00E+00 

10 10 1 0.00E+00 0.00E+00 0.00E+00 

10 22 1 0.00E+00 0.00E+00 0.00E+00 

32 1 1 –2.10E+00 –1.05E–02 3.50E+00 

32 2 1 –5.74E+00 –2.45E–03 4.10E+00 

32 5 1 –1.33E+01 –3.73E–04 4.86E+00 

32 10 1 0.00E+00 0.00E+00 0.00E+00 

32 22 1 0.00E+00 0.00E+00 0.00E+00 

100 1 1 6.23E–01 –3.44E–02 3.00E+00 

100 2 1 –1.94E+00 –1.58E–02 3.30E+00 

100 5 1 –6.44E+00 –1.16E–02 3.40E+00 

100 10 1 0.00E+00 0.00E+00 0.00E+00 

100 22 1 0.00E+00 0.00E+00 0.00E+00 

320 1 1 3.14E+00 –7.57E–02 2.70E+00 

320 2 1 1.18E+00 –5.14E–02 2.80E+00 

320 5 1 –2.13E+00 –4.42E–02 2.80E+00 

320 10 1 –8.30E+00 –1.01E–02 3.50E+00 

320 22 1 0.00E+00 0.00E+00 0.00E+00 

1000 1 1 5.32E+00 –1.48E–01 2.40E+00 

1000 2 1 3.80E+00 –1.07E–01 2.50E+00 

1000 5 1 8.81E–01 –7.59E–02 2.60E+00 

1000 10 1 –2.76E+00 –3.01E–02 3.10E+00 

1000 22 1 –7.66E+00 –5.66E–03 3.90E+00 

 

 

 

 

 

Table A3: Parameters of the muon lateral distribution function (m
–2

)
 
using a form 

exp{a+b(lnr)
c
} with the distance r measured in meters

 

 
Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 1 –3.98E+00 –7.02E–06 6.98E+00 

1 2 1 –7.11E+00 –1.36E–07 8.71E+00 

1 5 1 0.00E+00 0.00E+00 0.00E+00 

1 10 1 0.00E+00 0.00E+00 0.00E+00 

1 22 1 0.00E+00 0.00E+00 0.00E+00 

3.2 1 1 –1.44E+00 –6.28E–04 4.93E+00 

3.2 2 1 –3.14E+00 –1.10E–04 5.56E+00 

3.2 5 1 –4.94E+00 –1.00E–04 5.33E+00 

3.2 10 1 –7.53E+00 –1.30E–05 6.03E+00 

3.2 22 1 –1.06E+01 –7.30E–06 6.04E+00 

10 1 1 8.30E–01 –2.65E–02 3.06E+00 

10 2 1 –6.84E–01 –7.42E–03 3.58E+00 

10 5 1 –2.27E+00 –1.44E–03 4.26E+00 

10 10 1 –3.91E+00 –4.76E–04 4.61E+00 

10 22 1 –5.68E+00 –4.57E–04 4.41E+00 

32 1 1 2.10E+00 –6.91E–02 2.57E+00 

32 2 1 1.11E+00 –4.92E–02 2.65E+00 

32 5 1 –1.98E–01 –2.72E–02 2.85E+00 

32 10 1 –1.64E+00 –8.90E–03 3.31E+00 

32 22 1 –3.16E+00 –1.85E–03 3.98E+00 

100 1 1 2.93E+00 –6.44E–02 2.63E+00 

100 2 1 2.15E+00 –4.97E–02 2.66E+00 

100 5 1 1.14E+00 –4.51E–02 2.62E+00 

100 10 1 1.59E–01 –4.61E–02 2.54E+00 

100 22 1 –8.21E–01 –2.99E–02 2.74E+00 

320 1 1 3.81E+00 –5.68E–02 2.75E+00 

320 2 1 3.19E+00 –4.40E–02 2.76E+00 

320 5 1 2.35E+00 –3.69E–02 2.75E+00 

320 10 1 1.25E+00 –3.68E–02 2.67E+00 

320 22 1 6.18E–01 –6.07E–02 2.40E+00 

1000 1 1 4.83E+00 –8.11E–02 2.59E+00 

1000 2 1 4.35E+00 –5.57E–02 2.68E+00 

1000 5 1 3.60E+00 –3.88E–02 2.77E+00 

1000 10 1 2.59E+00 –3.36E–02 2.75E+00 

1000 22 1 1.87E+00 –4.34E–02 2.59E+00 

 

 

 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 0.9 –4.20E+00 –1.27E–05 6.62E+00 

1 2 0.9 –8.16E+00 –1.13E–07 8.60E+00 

1 5 0.9 0.00E+00 0.00E+00 0.00E+00 

1 10 0.9 0.00E+00 0.00E+00 0.00E+00 

1 22 0.9 0.00E+00 0.00E+00 0.00E+00 

3.2 1 0.9 –1.67E+00 –4.54E–04 5.06E+00 

3.2 2 0.9 –3.45E+00 –5.67E–05 5.85E+00 

3.2 5 0.9 –5.51E+00 –2.85E–06 7.09E+00 

3.2 10 0.9 –8.07E+00 –2.61E–07 7.98E+00 

3.2 22 0.9 –1.14E+01 –1.16E–08 9.43E+00 

10 1 0.9 6.39E–01 –2.21E–02 3.14E+00 

10 2 0.9 –1.04E+00 –3.87E–03 3.89E+00 

10 5 0.9 –2.62E+00 –7.79E–04 4.53E+00 

10 10 0.9 –4.29E+00 –2.57E–04 4.88E+00 

10 22 0.9 –5.98E+00 –2.45E–04 4.69E+00 

32 1 0.9 1.92E+00 –7.02E–02 2.54E+00 

32 2 0.9 9.09E–01 –4.46E–02 2.68E+00 

32 5 0.9 –4.89E–01 –1.88E–02 3.02E+00 

32 10 0.9 –1.81E+00 –7.68E–03 3.38E+00 

32 22 0.9 –3.30E+00 –2.16E–03 3.89E+00 

100 1 0.9 2.60E+00 –5.25E–02 2.71E+00 

100 2 0.9 2.02E+00 –4.77E–02 2.67E+00 

100 5 0.9 1.01E+00 –4.78E–02 2.57E+00 

100 10 0.9 2.59E–02 –4.79E–02 2.51E+00 

100 22 0.9 –1.14E+00 –1.81E–02 2.98E+00 

320 1 0.9 3.43E+00 –4.35E–02 2.85E+00 

320 2 0.9 3.09E+00 –4.27E–02 2.76E+00 

320 5 0.9 2.10E+00 –3.22E–02 2.80E+00 

320 10 0.9 1.20E+00 –4.66E–02 2.54E+00 

320 22 0.9 5.81E–01 –6.90E–02 2.34E+00 

1000 1 0.9 4.40E+00 –6.03E–02 2.71E+00 

1000 2 0.9 4.28E+00 –5.44E–02 2.67E+00 

1000 5 0.9 3.40E+00 –3.53E–02 2.79E+00 

1000 10 0.9 2.43E+00 –3.50E–02 2.72E+00 

1000 22 0.9 1.59E+00 –3.87E–02 2.63E+00 
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Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 0.8 –4.57E+00 –2.01E–05 6.31E+00 

1 2 0.8 –9.42E+00 –4.07E–07 7.77E+00 

1 5 0.8 0.00E+00 0.00E+00 0.00E+00 

1 10 0.8 0.00E+00 0.00E+00 0.00E+00 

1 22 0.8 0.00E+00 0.00E+00 0.00E+00 

3.2 1 0.8 –1.88E+00 –4.41E–04 5.03E+00 

3.2 2 0.8 –3.76E+00 –2.02E–05 6.36E+00 

3.2 5 0.8 –5.88E+00 –3.39E–06 6.96E+00 

3.2 10 0.8 –8.83E+00 –2.96E–05 5.53E+00 

3.2 22 0.8 –1.19E+01 –2.07E–05 5.59E+00 

10 1 0.8 4.13E–01 –1.83E–02 3.22E+00 

10 2 0.8 –1.22E+00 –3.41E–03 3.93E+00 

10 5 0.8 –2.94E+00 –4.97E–04 4.72E+00 

10 10 0.8 –4.55E+00 –2.54E–04 4.85E+00 

10 22 0.8 –6.42E+00 –2.47E–04 4.62E+00 

32 1 0.8 1.87E+00 –6.68E–02 2.55E+00 

32 2 0.8 6.76E–01 –3.68E–02 2.76E+00 

32 5 0.8 –7.40E–01 –1.60E–02 3.08E+00 

32 10 0.8 –2.16E+00 –4.65E–03 3.61E+00 

32 22 0.8 –3.53E+00 –2.23E–03 3.85E+00 

100 1 0.8 2.76E+00 –6.41E–02 2.60E+00 

100 2 0.8 1.88E+00 –4.63E–02 2.67E+00 

100 5 0.8 8.20E–01 –4.60E–02 2.58E+00 

100 10 0.8 –2.03E–01 –4.59E–02 2.52E+00 

100 22 0.8 –1.07E+00 –3.10E–02 2.70E+00 

320 1 0.8 3.64E+00 –5.34E–02 2.74E+00 

320 2 0.8 2.96E+00 –3.94E–02 2.79E+00 

320 5 0.8 1.96E+00 –3.25E–02 2.78E+00 

320 10 0.8 9.11E–01 –3.96E–02 2.60E+00 

320 22 0.8 7.44E–01 –1.28E–01 2.03E+00 

1000 1 0.8 4.72E+00 –7.45E–02 2.60E+00 

1000 2 0.8 4.18E+00 –5.06E–02 2.69E+00 

1000 5 0.8 3.30E+00 –3.81E–02 2.74E+00 

1000 10 0.8 2.12E+00 –3.02E–02 2.77E+00 

1000 22 0.8 1.68E+00 –6.99E–02 2.33E+00 

 

 

 

 

 

 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 0.7 –4.93E+00 –3.26E–05 5.98E+00 

1 2 0.7 –1.19E+01 –3.48E–09 7.65E+00 

1 5 0.7 0.00E+00 0.00E+00 0.00E+00 

1 10 0.7 0.00E+00 0.00E+00 0.00E+00 

1 22 0.7 0.00E+00 0.00E+00 0.00E+00 

3.2 1 0.7 –2.22E+00 –2.20E–04 5.35E+00 

3.2 2 0.7 –3.99E+00 –6.72E–05 5.68E+00 

3.2 5 0.7 –6.30E+00 –1.25E–05 6.24E+00 

3.2 10 0.7 –9.84E+00 –9.06E–05 4.89E+00 

3.2 22 0.7 0.00E+00 0.00E+00 0.00E+00 

10 1 0.7 7.70E–02 –1.14E–02 3.44E+00 

10 2 0.7 –1.51E+00 –2.53E–03 4.05E+00 

10 5 0.7 –3.30E+00 –2.49E–04 5.04E+00 

10 10 0.7 –4.88E+00 –2.26E–04 4.87E+00 

10 22 0.7 –6.95E+00 –6.59E–05 5.21E+00 

32 1 0.7 1.71E+00 –6.35E–02 2.56E+00 

32 2 0.7 4.04E–01 –3.02E–02 2.84E+00 

32 5 0.7 –1.06E+00 –1.05E–02 3.28E+00 

32 10 0.7 –2.49E+00 –2.86E–03 3.83E+00 

32 22 0.7 –3.89E+00 –1.07E–03 4.19E+00 

100 1 0.7 2.64E+00 –6.26E–02 2.59E+00 

100 2 0.7 1.68E+00 –4.39E–02 2.67E+00 

100 5 0.7 5.93E–01 –4.49E–02 2.57E+00 

100 10 0.7 –5.20E–01 –3.33E–02 2.67E+00 

100 22 0.7 –1.53E+00 –1.65E–02 3.00E+00 

320 1 0.7 3.54E+00 –5.21E–02 2.73E+00 

320 2 0.7 2.85E+00 –4.06E–02 2.75E+00 

320 5 0.7 1.66E+00 –2.96E–02 2.80E+00 

320 10 0.7 6.17E–01 –3.48E–02 2.65E+00 

320 22 0.7 1.63E–01 –6.28E–02 2.37E+00 

1000 1 0.7 4.61E+00 –6.72E–02 2.63E+00 

1000 2 0.7 4.07E+00 –4.88E–02 2.69E+00 

1000 5 0.7 2.95E+00 –3.00E–02 2.83E+00 

1000 10 0.7 1.73E+00 –2.22E–02 2.90E+00 

1000 22 0.7 1.26E+00 –5.22E–02 2.46E+00 
 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 0.6 –5.62E+00 –2.93E–05 5.91E+00 

1 2 0.6 0.00E+00 0.00E+00 0.00E+00 

1 5 0.6 0.00E+00 0.00E+00 0.00E+00 

1 10 0.6 0.00E+00 0.00E+00 0.00E+00 

1 22 0.6 0.00E+00 0.00E+00 0.00E+00 

3.2 1 0.6 –2.56E+00 –1.68E–04 5.43E+00 

3.2 2 0.6 –4.30E+00 –8.90E–05 5.48E+00 

3.2 5 0.6 –6.83E+00 –1.31E–05 6.18E+00 

3.2 10 0.6 –1.13E+01 –9.78E–06 6.11E+00 

3.2 22 0.6 0.00E+00 0.00E+00 0.00E+00 

10 1 0.6 –3.26E–01 –6.49E–03 3.70E+00 

10 2 0.6 –1.87E+00 –1.55E–03 4.27E+00 

10 5 0.6 –3.66E+00 –1.93E–04 5.12E+00 

10 10 0.6 –5.31E+00 –1.86E–04 4.91E+00 

10 22 0.6 –7.57E+00 –3.33E–05 5.45E+00 

32 1 0.6 1.48E+00 –5.55E–02 2.61E+00 

32 2 0.6 6.50E–02 –2.29E–02 2.96E+00 

32 5 0.6 –1.41E+00 –7.16E–03 3.45E+00 

32 10 0.6 –2.88E+00 –1.72E–03 4.05E+00 

32 22 0.6 –4.29E+00 –8.55E–04 4.26E+00 

100 1 0.6 2.48E+00 –6.03E–02 2.59E+00 

100 2 0.6 1.41E+00 –4.42E–02 2.64E+00 

100 5 0.6 3.36E–01 –4.41E–02 2.56E+00 

100 10 0.6 –6.75E–01 –3.75E–02 2.60E+00 

100 22 0.6 –1.72E+00 –1.57E–02 3.01E+00 

320 1 0.6 3.38E+00 –4.70E–02 2.76E+00 

320 2 0.6 2.43E+00 –3.07E–02 2.86E+00 

320 5 0.6 1.39E+00 –3.05E–02 2.76E+00 

320 10 0.6 5.97E–01 –6.04E–02 2.37E+00 

320 22 0.6 2.33E–01 –9.35E–02 2.17E+00 

1000 1 0.6 4.45E+00 –5.95E–02 2.68E+00 

1000 2 0.6 3.60E+00 –3.46E–02 2.83E+00 

1000 5 0.6 2.62E+00 –2.57E–02 2.88E+00 

1000 10 0.6 1.55E+00 –3.00E–02 2.73E+00 

1000 22 0.6 1.28E+00 –8.27E–02 2.23E+00 
 

Energy 

(GeV) 

Altitude 

(km) 
cosθ a b c 

1 1 0.5 –6.61E+00 –1.13E–05 6.19E+00 

1 2 0.5 0.00E+00 0.00E+00 0.00E+00 

1 5 0.5 0.00E+00 0.00E+00 0.00E+00 

1 10 0.5 0.00E+00 0.00E+00 0.00E+00 

1 22 0.5 0.00E+00 0.00E+00 0.00E+00 

3.2 1 0.5 –3.00E+00 –6.39E–05 5.87E+00 

3.2 2 0.5 –4.97E+00 –2.45E–05 6.06E+00 

3.2 5 0.5 –7.98E+00 –3.61E–05 5.55E+00 

3.2 10 0.5 0.00E+00 0.00E+00 0.00E+00 

3.2 22 0.5 0.00E+00 0.00E+00 0.00E+00 

10 1 0.5 –7.21E–01 –3.79E–03 3.94E+00 

10 2 0.5 –2.37E+00 –5.83E–04 4.72E+00 

10 5 0.5 –4.17E+00 –8.76E–05 5.46E+00 

10 10 0.5 –5.76E+00 –8.57E–05 5.27E+00 

10 22 0.5 –8.10E+00 –1.57E–05 5.80E+00 

32 1 0.5 1.06E+00 –4.44E–02 2.69E+00 

32 2 0.5 –4.00E–01 –1.35E–02 3.20E+00 

32 5 0.5 –1.89E+00 –3.48E–03 3.78E+00 

32 10 0.5 –3.24E+00 –1.12E–03 4.24E+00 

32 22 0.5 –4.69E+00 –1.05E–03 4.10E+00 

100 1 0.5 2.03E+00 –5.97E–02 2.55E+00 

100 2 0.5 1.17E+00 –4.33E–02 2.63E+00 

100 5 0.5 –1.59E–01 –2.70E–02 2.78E+00 

100 10 0.5 –1.18E+00 –2.03E–02 2.88E+00 

100 22 0.5 –2.06E+00 –1.25E–02 3.10E+00 

320 1 0.5 2.72E+00 –3.58E–02 2.84E+00 

320 2 0.5 2.18E+00 –2.98E–02 2.84E+00 

320 5 0.5 1.04E+00 –2.95E–02 2.75E+00 

320 10 0.5 3.37E–01 –5.79E–02 2.38E+00 

320 22 0.5 –1.87E–01 –6.65E–02 2.33E+00 

1000 1 0.5 3.68E+00 –4.23E–02 2.79E+00 

1000 2 0.5 3.36E+00 –3.14E–02 2.85E+00 

1000 5 0.5 2.27E+00 –2.30E–02 2.91E+00 

1000 10 0.5 1.20E+00 –2.94E–02 2.71E+00 

1000 22 0.5 8.04E–01 –5.94E–02 2.37E+00 
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