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Introduction
A direct consequence of general relativity: light bends in the vicinity of 

a gravity field. Light emitted by a distant object and travelling near a very 
massive object in the foreground will appear to come from a point away from 
the real source and produce effects of mirage and of light concentration 
generally referred to as gravitational lensing. 

One commonly distinguishes between three types of gravitational 
lensing: strong, weak and micro.

Strong lensing: when there are easily visible distortions such as the 
formation of  Einstein rings, arcs, and multiple images. 

Weak lensing: when the distortions of the background sources are too 
small, say only a few percent, to allow for an analysis in terms of single 
source-lens pairs but sufficiently numerous to allow for a statistical analysis.

 Microlensing refers to cases where the effect is too small to produce 
visible distortions in shape, but the amount of light received from a 
background source is observed to change with time while the lens passes in 
front of the source. 
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Strong lensing

Ideally, an Einstein ring occurs when the lens and the source are both 
spherical and exactly on the line of sight of the observer. 

When the lens or the source are not spherical or when the alignment is not 
perfect, one observes multiple images of the same source or partial arcs scattered 
around the lens. The number and shape of these depend upon the relative positions 
of the source, lens, and observer, and the shape of the gravitational well of the 
lensing object. 
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Weak lensing
Observed: preferred stretching of the background objects perpendicular to the 
direction to the center of the lens. By measuring the shapes and orientations of 
large numbers of distant galaxies, their orientations can be averaged to measure 
the shear of the lensing field in any region. This, in turn, can be used to 
reconstruct the mass distribution in the area: in particular, the distribution of 
dark matter can be reconstructed. 

Distant galaxies lensed by Cluster Abell 2218



Microlensing
Refers to cases where the effect is too small to produce visible 

distortions in shape, but the amount of light received from a background 
source is observed to change with time while the lens passes in front of the 
source (in the cases of strong and weak lensing, both source and lens are 
fixed). Microlensing has been used to search for brown dwarfs in order to 
evaluate their contribution to dark matter and, more recently, to search for 
exoplanets with much success.

Detection of exoplanets by 
gravitational microlensing A typical microlensing event (OGLE, 2005) 6



Special relativity: Lorentz  transformations

The basis of special relativity is the so-called relativity principle 
according to which the laws of nature are the same in two frames in 
uniform movement with respect to each other, usually referred to as inertial 
frames. 

The Lorentz transformation:             
                               x’= x coshα + t sinhα
                               t’ = x sinhα + t coshα 

Energy E and momentum p form a four vector:
                              

                (m being the rest mass of the particle, a scalar) 

velocity β=tanhα 

2 2 2E p m− =

7
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Gravity of photons

     General relativity extends the relativity principle from inertial frames to frames 
in free fall

      Consider a homogeneous gravity field. Send a photon of energy E from A to B. 

A photon being massless → E=p.

At B, the Lorentz transformation reads  E’= Ecoshα + psinhα 

 where tanhα = γh   →  E’=E+Eγh 

Accordingly, when a star having a mass M and a radius R emits a photon of 
frequency ν, this photon is red shifted when it reaches far distances by an 
amount (remember that E=ħν) Δν/ν=ΔE/E=GM/R.
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Schwarzschild metric 

The Schwarzschild metric applies in empty space around a 
massive body. 

Schwarzschild metric has the form:

A singularity occurs at RSchwarzschild =2MG where the escape 
velocity is equal to the light velocity (equivalently, where a 
body falling from infinity, originally with zero velocity, has 
been accelerated to the light velocity). It corresponds to black 
holes. 

2 2 1 2 2 2 2 2(1 2 / ) (1 2 / ) (sin )ds MG r dt MG r dr r d dθ ϕ θ−= − − − − +
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Bending of light
Light travels more slowly in a gravity field, the delay on Earth of light 
emitted by the Sun amounts to 50 μs (10–7). This has been checked by 
sending a radar signal from the Earth to Venus and back. This effect is 
called gravitational delay.

dR

d(Δt)

M

R

A consequence of gravitational delay is the 
bending of light in the vicinity of a massive 
body, light travelling more slowly closer to the 
body than farther away. The bending angle in 
the approximation of small bending is 4MG/R, 
M being the mass of the massive body and R 
being the closest distance of approach of the 
light ray.

It amounts to nearly 2 seconds of arc in the 
case of the Sun, which may be thought of as 
being a weak lens with focal length equal to its 
radius divided by this angle of deflection, 
namely some 550 AU. 
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Tracing light rays

We start with a photon at a distance r from the centre O of a 
spherically symmetric lens of mass M and radius R. 

The Schwarzschild radius of the lens is R*=2GM.

We use R as unit length and define R*=λR, r=ρR and dσ=ds/R

An important parameter is ζ= λ/ρ=R*/r

Light rays are traced in steps of dσ = 0.01 using the relation:
dα/dσ=sinα(ρ–2λ)/(ρ[ρ–λ])=(sinα/ρ)([1–2ζ]/[1– ζ ])

y

α

δ

ds

O

d(ds)

dω

1

2

r+dr
x

r



12Light rays traced for λ=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.9999 



13Dependence of Δα on λ for two different ranges of λ.

We expect rays in the vicinity of α0= αlimit  to be bent by 4MG/R=2λ in 

the small bending approximation. This is indeed what we find with the 
simulation but as soon as λ exceeds a few percent, bending increases 
much faster than linearly and the light ray may indeed curl around the 
source when approaching the black hole limit.



14

Three examples of rays in the vicinity of α0= αlimit . 

The values of λ are 0.5, 0.6 and 1 respectively. 



Einstein rings

L

A

O

S P

2α

ω

b
θ

θE

We consider the lensing of a remote quasar S by a foreground  spherical galaxy L. 

Assuming: Mass of the lens: M =1012M☼ => RSchwarzschild ~3 1012km=107 ls=3 10–1 ly. 

                  Radius of the lens: R = 3 103 ly, meaning λ=10–4, 

                  LS=109 ly and OL=108 ly.

   The detector  resolution  is  ζ=0.2 ppm. 

   The angle ω (in ppm) measures the misalignment of the observer with 
respect to the source-lens line.

Defining: σS=R/SL, σO=R/OL, σOS= σS+σO=OS/(SL×OL), k=(1+σO/σS)–1=σS/σOS

In the SOL plane, two rays reach from S to O, on either sides of  the  lens (θ±).

 θ±=½{kω±√k2ω2+8kλσS}
                        

15
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   For a ray to be seen by the observer, two conditions must be 
satisfied: it must avoid the lens and it must reach O within the 
angular resolution ζ of the detector. 

     The appearance of a ring can be drawn once O, L, S, λ, ω and ζ 
are given by generating rays emitted from S at angle (θ,φ) and 
checking whether they obey the above conditions. Out of the 
SOL plane, (θ,φ) is chosen to comfortably bracket the [θ+,θ–] 
interval.

The result depends on the product λσOS and not on λ and σOS 

separately. Lensing a remote quasar by a galaxy (λ~10–6,       σOS 
~10–4) or a nearby star by a foreground stellar black hole (λ~1, 
σOS ~10–10) gives the same ring. 
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A collection of Einstein rings observed 
with the Hubble Space Telescope. 
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There is an important amplification of the light collected near perfect 
alignment. In the case studied here, the effect persists for values of ω of the 
order of  20 µrad. 
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The simulation becomes in such cases much more complicated, 
each ray must be followed along its path across the complex 
gravitational field, but this complication is purely technical and of 
little interest from a physics point of view. For this reason, we 
restricted the present study to the case of spherical lenses and 
point like sources, which display the main features of gravitational 
lensing in a most transparent way.

In practical cases, the non-
spherical form of the lens, 
and to a lesser extent 
possibly of the source, result 
in strongly distorted rings, 
which may take shapes as 
seen in the Einstein Cross 
or other similar images. 
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Conclusions 

A review of gravitational lensing has been presented 
including strong lensing, weak lensing and micro-lensing. The 
physics bases of the effect have been briefly reviewed.

Codes have been written in order to illustrate the 
behaviour of light in a gravitational field. 

– A first code has made it possible to trace rays in the 
vicinity of a massive lens, with particular emphasis on the 
extreme bending that occurs in the vicinity of a black hole. 

 – A second code has been used to illustrate the formation 
of an Einstein ring and its disappearance as the alignment 
deteriorates. The light amplification that occurs in the case of 
perfect alignment has been demonstrated.
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Thank you for your attention!
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